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MODELING OF ELECTROMAGNETIC
SCATTERING FROM SHIPS

1. INTRODUCTION

Scattering of electromagnetic (EM) energy has been a subject of interest to the scientific com-
munity since the nineteenth century. The first and most extensively studied scattering object has been
the sphere. However, very few scattering problems have solutions that -re known and exact although
many problems have asymptotic solutions [1]. The problems that have been solved have been prob-
lems of scattering from simple geometric shapes [1,21. The modeling of complex targets is an
extremely difficult, inexact task [3;; quoting from Ref. 4, "An exact solution to the scattering problem
for a complex target is out of the question..

Most of the interest in EM scattering has come from the field of radar. Radars obtain information
about targets by illuminating the target and then measuring the EM field scattered by the target and
environment. Radars have been used for this purpose since World War 11. Since then their perfor-
mance capabilities have improved rapidly. Paralleling the improved radar performance has been an
increasing need for better understanding of target scattering properties. This need has directed most of
the scattering research since World War If. Almost all targets of interest for military and civilian radars
have physical dimensions much larger than the radar wave length (scattering in the optical region);
that is, they are distributed targets. Clearly, any scattering model that is to be useful in radar applica-
tions must be limited in its ability to fully describe target scattering.

Although EM scattering is the phenomenon which makes radars possible, by producing scattered
fields for the radar to sense, it is well known that it is only necessary to understand two projections of
these fields to predict the performance of most radar systems. These projections are radar cross section
(RCS) and glint. RCS represents the apparent size of the target, and glint represents the apparent loca-
tion, in angle, of the target, as sensed by the radar. Though generally analyzed as separate phenomena,
it is well known that RCS and glint are different manifestations of the same target-induced effects.
Most of the research on scattering since the development of radar has been directed to understanding
RCS and glint rather than scattering per se.

Distributed targets are typically modeled as a finite number of individual, point-source scatterers
whose characteristics are determined by the target's structure. (We refer to such models as N-source
models.) Both RCS and glint can be represented by using such models. The various N-source models
that have arisen differ depending on how the individual scatterers ace characterized. Generally, the
scatterer characterizations that are made depend on the intended application of the target model. Build-
ing on these earlier N-sourcc moidels, this report develops a new approach to modeling the scattering
from ships.

1.1 The Scattering Problem

Practical solutions to the modeling of distributed targets are approximations that range from
extremely complex models that describe many aspects of scattering (and are difficult and/or expensive
to use) to simple models that ignore many aspects (but are easy and/or inexpensive to use). Each
model is developed subject to constraints imposed by application requirements. We remark that no
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model can completely describe all aspects of a physical phenomenon and very "crude" models are often
the most useful; modeling a resistive element in an electric circuit by E=IR is often quite useful
though such a model ignores known resistive element dependencies nrn temperature, power, frequency,
etc., and hence is not useful in predicting failure modes, noise properties, etc., of the element.

1. 1.1 Scattering Models

The models that have been developed to represent complex target scattering can be described as
being one of three types (or a combination thereof): deterministic, statistical, or stochastic. The sim-
plest deterministic model is one where the target is represented as a fixed-position, point-source radia-
tor with constant RCS and no glint. Deterministic scattering solutions for simply shaped objects can
often be obtained by using the geometric theory of defraction or physical optics theory. The most com-
plex deterministic models represent the target as a collection of many, simply shaped objects for which
scattering solutions exist. The scattered field of the target then becomes the superposition of the scat-
tered fields of the simple objects, where effects such as shadowing, multiple reflections, etc., are
appropriately accounted for.

The statistical models are those in which only the first-order statistics of one or more aspects of
the scattering, usually RCS, are modeled. These models are usually developed either from measure-
ments of the target or by deriving the statistics from some broad assumption (e.g., that the target is
composed of many independent scatterers of approximately equal scattering areas) regarding the target
structure. The well-known Swerling models of RCS are examples of this type.

The stochastic models are those that describe the scattered field as a stochastic process. Stochastic
processes are useful because they not only specify first-order statistical properties but they also specify
higher order fluctuation properties of the target including, at least, the second-order correlation proper-
ties (e.g., the correlation function). Correlation properties of the radar's receive signal must be known
if an analysis of the tracking performance of the radar is to be made. The stochastic models used for
target modeling are usually second-order stochastic models (i.e., they specify the first- and second-
order properties of the process) because to date, radars exploit only the first- and second-order proper-
ties of their receive signals and because second-order processes are well developed mathematically.

Stochastic models usually are either extensions or combinations of deterministic and/or statistical
models. An example of the extension approach is a model that converts the many scatterer detcrminis-
tic model described above to a stochastic model by describing the target's range and orientation relative
to the radar as stochastic processes and then solving the scattering problem as a function of time. An
example of a combination model approach is a model that uses measurements that characterize not only
the first-order statistics, but also the correlation properties of a target's scattering as a function of
radar-target relative motion. The stochastic model is then a stochastic process that is defined to pro-
duce the measured statistics as a function of the measured parameters. We refer to such a model as an
empirical stochastic model. We note that when the target being modeled is extremely large (e.g.,
Earth's surface illuminated by the radar, the moon, etc.) the approach of representing the surface as a
stochastic process is often used.

1.1.2 Fundamental Constraint

The fundamental constraint imposed in the development of the model presented here is that the
model must he useful in the analysis and simulation of the pulse-by-pulse tracking performance of
pulse radars. A major implication of this constraint is that the model must be capable of efficiently pro-
ducing time-series representations of scattered radar-signals. Both empirical stochastic models and
deterministic models using many simple scatterers can be applied under this constraint. However, each
of these models has serious drawbacks for the desired application. The stochastic model, although very
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efficient for simulation purposes, is strongly dependent on actual me-isured data to provide the needed
statistical information, and so extrapolation of such a model without supporting data is questionable.
Further, this type of model is usually only weakly connected to the physical process (target-radar rela-
tive motion) that is causing the scattered-signal variations. The deterministic model has two major
drawbacks. First, such a model requires an enormous amount of detailed information about the actual
target to be modeled; the structure of that target's surface must be precisely known. Second, the
simulation of such a model usually is extremly time consuming because many exact scattering solutions
must be calculated to produce the required time series.

low In view of the above, tracking-radar studies and simulations would benefit from a model that is
stochastic, that can be efficiently simulated, and that can be parametrized by the fundamental physical
properties of target-radar relative motion and "significant" target structure. Such a model would not be
as accurate as the deterministic model when the target structure and motion are precisely known, and it
might not be as simple and efficient in simulation as the empirical stochastic model when extensive
experimental data ii available. However, it would incorporate the fundamental simulation efficiency of
a stochastic model and much of the physical basis of the deterministic model. We will refer to this type
of model as a phenomenological stochastic model.

1.1.3 Statement of the Problem

The objective of this report is to develop a phenomenological stochastic model for the scattering
of radar signals from distributed targets using an N-source formulation. The fundamental parameters
on which the model is based are targei motion and structure. We assume that the target's motion can
be characterized as a stochastic process and that the target's approximate structure and dimensions are
known.

We further restrict the model by imposing several additional constraints on its applications, The
model is intended for use in analyzing the performance of continuous tracking, monostatic, pulse radars
that operate at microwave frequencies and track only in range, azimuth, and elevation. The targets of
interest are assumed to be large with respect to the radar wavelength, structurally complex, in the radar

. antenna's far-field, and uniformly (plane wave) illuminated by the radar.

Because of the importance of RCS and glint (and the existence of associated data bases), the
model fidelity is to be inferred from the validity of the tesuiting RCS and glint representations. Valida-
tion of any model of scattering from complex targets must, of practical necessity, be statistical. That is,
the model must produce a time series of data that can be tested for statistical accuracy relative to mea-
sured target data. For the reasons given in Sec. 1.1.1, we require that the model be accurate to
second-order statistics; that is, the model must accurately represent the first-order probability density
function, the power spectral density function (and equivajently, the autocorrelation function), and asso-
ciated parameters over intervals where the process is piecewise-stationary. We do not require that the
second-order probability density function be specified because that function is difficult to estimate prac-
tically and though it more completely specifies the process, it is less useful in characterizing signal
time-correlation properties than is the power spectral density.

The primary targets of concern in this report are surface ships. Relative to aircraft modeling, ship
modeling has received limited attention in the literature. Ships are much more complex in structure
than aircraft and scattering from them is complicated by sea surface multipath. However, the model
developed is of a general nature and should be useful in problems where the assumptions made in its
development hold.

1.2 Previous Work

Variations in RCS as a function of time (amplitude scintillation) were first observed during World
War 11 [51. The early models of amplitude scintillation were developed for application in the detection

3
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of aircraft targets beginning with the work of Marcum [61 and Swerling [7,81. These models represent
the target as a point source whose fluctuation statistics are chosen depending on the type of radar used
and the measured or assumed fluctuation properties of the target. During the 1960s, numerous papers
and books appeared describing various methods of N-source modeling of RCS. The August 1965 issue
of the IEEE Proceedings [91 was devoted to radar reflectivity and is a good reference for the early RCS
work.

The glint phenomena were not observed until radar angle tracking capabilities improved in the late
1940s. The first models of glint appeared in Mead et at. [101, De Lano [111, and Howard [121 during
the 1950s. Each was based on the N-source concept.

We focus our review on models that are based on the N-source concept because that is the :;jn-
cept on which the analysis of this report is based.

1.2.1 Random Models

One method or nodeling complex targets has been to represent the target as an N-source model
- with scatterers whose individual scattering properties are assumed to be random. When simple random

properties are assumed, this type of model allows an analytical solution to be obtained for the target
scattering. This method was used by Muchmore [13,141 to describe the RCS of aircraft and reasonable
spectral estimates, relative to measured data, were obtained. However, as pointed out by Peters and
Weimer [15-171, this method has serious drawbacks when used to analyze radar tracking performance.
This is because over short time and aspect intervals the individual scatterers do not behave indepen-
dently.

This random method was used, for arbitrary complex targets, by De Lano [111, Gubonain [181,
and Mumford [19] to study glint statistics; by Mohanty [201, Gruner [21], and Mitchell [22,231 to study

,U _ RCS statistics; and by Varshavchik [241 and Borden [25] to study the combined RCS-glint problem.
Baras [26] used an N-source representation of the target to obtain the fundamental parameters of an
equivalent-point-source model of glint.

Jakeman [27,281 and Jakeman and Pusey [29-321 have investigated using K-distributions [271 to
describe the amplitude statistics of scattered radiation in a variety of experiments involving scattering
from turbulent media (e.g., sea clutter and optical scintilation). This K-distribution model arises when
it is assumed not only that the individual sources' amplitudes and phases are independent random vari-

i- ables but also that the number of sources is a random variable.

1.2.2 Deterministic Models

A Thc most common type of model of c . plex targets based on the N-source concept assumes that
* the target is composed of scatterers wlih simple geometric shape for which scattering solutions are
: known. The field scattered by the target is then the sum of the individual scattered fields for ihe given

radar-target geometry. Physi.:al optics theory, the geometric theory of diffraction, integral equation
V. methods, and combinations thereof are used to obtain scattering solutions for the component scatterers.

Discussions of these methods can be found in many papers and books; examples are Crispin and Siegel
[331, Bechtel and Ross [341, Bowman et al. [351, Ruck et al. [361, Keller [371, and Oshiro et al. [38,391.
Many examples of aircraft and missile modeling are contained in or referred to by the previous refer-
ences. Examples of ship models using this approach are given by Toothman [401 and Radza and Stenger
[411. We note that in modeling ships, thousands of scatterers are often required and usually up to

L, twenty generic types of scatterers are used. Further, multipath effects on each scatterer and multiple
scattering must be accounted for.

4
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0^ The major studies of glint have been performed without assigning specific properties to the indivi-
dual scattered fields. This approach has led to generic representations for glint. Howard [12] used this
approach to show that glint was equivalent to the slope of the phase front of the reflected field in the
radar angular coordinate of interest. Lindsay [421 expanded the concept of phase-front slope to phase-
front gradient. He also showed the relationship between glint and Doppler scintillation. Dunn and
Howard [431 showed that glint was equivalent to Poynting vector tilt and, independent [51 of Lindsay,
showed the relationship between glint and Doppler scintillation.

1. 2.3 Unified Scattering Models

Very few attempts have been made to develop a unified RCS and glint model for the time-varying
return from a complex target. The geometric models described above can be used to generate time
series of data by mcving the target randomly and solving for the scattered field as a function of time.
Such a procedure is of course extremely time consuming even on a computer, especially for ships.
Wright and Haddad [5] developed such a model for an airborne drone where the individual scatterers
.were represented as ellipsoids. Both RCS and two-dimensional glint were modeled. The stochastic
returns from several target aspects were obtained and analyzed, assuming appropriate random motion of
the drone. Borden [25] developed a random model for the unified target return of an aircraft, assum-
ing only one-dimensional glint. He modeled the target as N sources and then assigned statistical values
to the individual scatterer amplitudes, 'hases, and Doppler frequencies. Varshavchik [241 investigated

at the relationship between the amplitude and phase characteristics of targets composed of an array of
identical isotropic scatterers. He studied returns resulting from small angle-oscillations of the target in
a fixed plane.

1.2.4 Multipath Models

Low grazing-angle, forward-scatter, over-water muitipath has been studied extensively during the
past quarter century. The most common representation of such scattering has been made in terms of
equivalent-point-source mode's where the scattered field is viewed as being composed of two com-

:* ponents: a "specular" (or %cnerent") component that is deterministic, and a "diffuse" (or "incoherent")
component that is random. Although it is well known that the specular component appears to a radar
as coming from a point-source that is located at the geometric image of the transmitting point-source,
the apparent point-source location(s) of the diffuse component(s) is not well understood. This tack of
understanding has caused difficulty in analyzing the tracking errors induced by diffuse inultipath
[44,45].

In a series of papers, Beard et al. [46-48] developed a second-order, statistical model of the scat-
tered field. The model is based on empirical measurements and the fundamental parameters are diffuse
and specular scattering-coefficients. Beard's model is valid in the sense of predicting the received
power at microwave frequencies. It implicitly assumes that the diffuse scattering can be viewed as com-
ing from a point-source located at the specular point. Northam [49] presents a second-order stochastic
model, based on this work, that is useful for simulating multipath effects as a function of time. Beck-
mann and Spizzichino [501 theoretically predicted that the diffuse scattering arose primarily from sur-
face areas near the transmitter and near the receiver. Barton [51] modified the diffuse coefficient that
was derived by Beckmann and Spizzichino with a roughness factor and formulated the coefficient in
terms of a bista!ic scattering parameter for the surface. He showed that diffuse scattering arose from
surface areas that vary as a function of geometry and surface structure. Mrstik and Smith [44] investi-
gated the limitations caused by multipath on low-angle tracking using four different models of the
poorly understood bistatic scattering parameter. Smith and Mrstik [451 investigated multipath-induced
tracking errors in elevation scanning and mcnopulse radars by assuming that the diffuse tracking errors
are small so that the diffuse power can be viewed as a noise-like interference superimposed on the
direct-path signal. Baras [521 has summarized the various models from the perspective of stochastic
modeling.

5
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2. SUMMARY

2 0s This report addresses the modeling of the effects of electromagnetic scattering from complex, dis-
tribluted targets in a multipath environment. The basic objectives are to develop a scattering model that

* is useful in analyzing and simulating the correlated processes of RCS and glint, and to develop the
equations of these processes appropriate to that model. The model is specifically intended to be useful
for studying the tracking performance of pulse-radars. Ships are the major targets of interest. We are
primarily concerned with representing scattering over short-time intervals. A digital simulation is
developed, and some implications of results from that simulation are discussed.

2.1 Approach

Our approach is to use a (largely) deterministic model for the target scattering and a stochastic
model of the target's motion. Using the target's motion as input we obtain a stochastic representation
of the received field. Over-water multipath effects are also modeled as stochastic processes.

We model the target as a finite collection of point-source scatterers that represent the dominant
scattering components of the target. These 'unit-scatterers" are defined to allow a straightforward
representation 6s the received field at the radar. Because the target is represented as a collection of
point-source scatterers, we draw on existing models of RCS and glint that were developed assuming
point-source scattering. A simulation of correlated RCS and glint is developed for use in studying the
effects of model-parameter variations.

2.2 Outline

The concept of unit-scatterer is introduced in Section 3, and an analytic representation of the con-
K ~ cept is presented. Methods of identifying and measuring the target's component unit-scatterers are pro-

posed and anticipated properties of the associated amplitudes and pha' es are discussed.

In Section 4, the usual model of the received field from a collection of point-source scatterers is
presented, and for completeness a model of a generic radar system is deveioped in the context of
point-source scatterers. A point-source multipath model is then incorporated into the equation that
represents the received field.

The motion equations for the individual unit-scatterers of a ship are derived in Section 5. For
completeness, two formulations of these equations are made, each assuming different inputs: the first
assumes knowledge of the driving forces and moments that are applied to the ship; the second assumes
a frequency-response model of the ship motion.

* Section 6 describes a ship-motion simulation that we developed as the stochastic input to the
scattering simulation. It is based on the cataloged ship-motion data generated by the David Taylor
Naval Ship Research and Development Center (DTNSRDC) using frequency-response models for the
ship motions.

In Section 7, equations for RCS are developed in terms of unit-scatterers based on the formula-
ticns of Section 4. Because tracking radars process data over short time-intervals, RCS variations over
such intervals are analyzed, and the nonstationarity of the resulting processes is illustrated.

In Section 8, two approaches to glint modeling are used to develop correlated azimuth and evalua-
tior. glint models for targets that are modeled by unit-scatterers. It is shown that one approach is more
useful than the other, especially when point-source multipath effects are included.

Section 9 presents the results of simulation studies. The effects of varying some of the model
. ; parameters are investigated.

6
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3. THE UNIT-SCATTERER CONCEPT

As described in Section 1, one of the most common approaches to modeling complex targets is to
represent them as being comprised of a finite number uf point-source scatterers. Using this approach,
various scattering models have been developed. The .ifferences in these models are due to the dif-
ferent ways in which the scatterers are characterized. We use this approach but attempt to minimize
the number of scatterers and the statistical assumptions made regarding the parameters of those scatter-
ers.

Determining the characteristic parameters of a scatterer given the incident and scattered fields is
referred to as an inverse scattering problem. Recent years have seen a ranid growth of interest in such
problems in many areas of science, especially in optics and electromagnetics; however, for the EM
inverse problem, "the prospects of expressing scattering characteristics of complex shapes successfully

': and simply are still inadequate" [53].

3.1 Scattering Matrix

When an object is illuminated by a plane wave (implied by large radar-to-scatterer range), the
scattered field, Es, can be viewed as a linear transformation of the incident field, E'. The matrix
representation of this transformation is called a scattering matrix [331. Such matrices have the form

* [S,, exp (qidl) S12 exp (pj)1

, S21 exp (JQ21) S22 exp Q (31)

(We note that due to phase being relative, the conser- :t: n of energy principle, and the reciprocity
theorem, only five of the eight parameters of S need to be determined to completely specify S (541.)
The scattered field representation is

_' E . SE'. (3.2)
The scattering matrix provides a significant characterization of radar targets; knowledge of it for a given

I : set of radar parameters allows a complete characterization of the target's RCS for those parameters.
- - Further, the scattering matrix for any polarization pair can be obtained from the matrix expressed in

terms of any two arbitrary polarization vectors that are orthogonal [331. As emphasized by Boerner
* * [53] in his paper discussing the utilization of polarization in the EM inverse scattering problem, when

; measuring target scattering all components of the scattering matrix should be estimated or a loss of
information will result.

. .: Given a radar with receiver polarization PR, the RCS of the object can be defined to be [541

0- lim 47rr2 | E PR:

(3.3)

-= im 4,rr (ISE' PR 12,
- where r is the target-to-radar range. If the transmitter has the polarization PT, then we can write E' =

I T I PT and

a-= lim 47rrl(Spr PR)2 (3.4)

7
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S..

In general, polarizations are defined in terms of horizontal and vertical unit vectors, p(H) and
.- V). Using these polarizations, we write the scattering matrix as

S S(HH) S(HV)j
j= S S(VH) S(VV) (3. 5)

It follows from Eqs. (3.4) and (3.5) that there are four fundamental components that characterize the
RCS of scattering objects; they are

"-(IJ) = lim 47rr2 S(I/J)12 , 1, J = H, V. (3.6)

Therefore, the RCS of an object can be described by the matrix

E[c (HH) c, HV)J| (3.7)

The above concept of scattering Man be extended to targets composed of individual scaterers for
* which scattering matrices are known. The procedure is to sum the components of the individual

scattering matrices to yield a target scattering matrix; relative phasing and multiple scattering between
the scatterers must, of course, be taken into account. The target RCS can then be determined from the
resulting matrix. However, the complexity of this procedure, due to the relative phasing, has led to the
use of two assumptions to simplify the problem. Because an average value of RCS is often all that is
required to be known about the target, it is often assumed that the individual scatterers are phase
independent. This allows a straightforward estimate of the RCS (cross products of independent phases

edit cancel). Second, because most radars operate using only one polarization, it is often assumed that the
three scattering components associated with the orthogonal polarization can be ignored. Both of these
assumptions have proved quite useful for practical problems.

3.2 Definition

It is well known that complex targets produce scattering that appears to result from several
apparent "sources" ("domiinaint scatterers," "bright spots," "hot spots," and "flare spots") that ar- located
at "scattering centers." The number, amplitude, and phase of these sources vary with target aspect and
radar frequenIcy, polarization, and resolution. Examples of this phenomenon for measured targets can
be found in Refs. 55 through 59. These apparent sources result because scattering arises not from the
target's entire surface but from points of discontinuity and specular points of that surface; cancellation
of the field occurs along continuously varying surfaces of the target [34]. Kell [60] refers to the portion
of the target surface that is near a scattering-center and that produces the return associated with that
scattering-center as the "cophased area." The scattering-centers are not necessarily due to specific
geometric objects; they may arise from phasing between adjacent objects whose returns, when summed
incoherently, would not be significant [341. This phenomenon may lead to scattering-centers that are
not located on the target.

In light of the above, we define a unit-scatterer (US) to be an apparent point-source scatterer as
perceived by a radar. Clearly, the definition is radar dependent; such objects depend directly on radar
frequency and pulse width. We characterize a US by a complex amplitude-matrix, X. Our definition of
this matrix is analogous to that of the scattering nmatrix:

-A l exp (jill) A,2 eXP (JW2 )J

X- 1-42, exp (021) -422 exp (k22) (3.8a)

where

A, or 112 = (lim 47rr 21,S1 12)1/2. (3.8b)

8
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The amplitudes and phases are functions of US orientation, and the phase is also a function of radar-US
range. The amplitude functions, All, are the square roots of the associated component RCSs. The
phase functions, 0/>, are defined relative to some reference point on the radar-to-target sight line; this
allows coherent summing of the matrices that represent the target. For the standard polarizations, Eq.
(3.8a) becomes

.[AH! exp (QOHH) A1Hv exp (J'HV)1

; - AVH exp(pkvy) A v exp(jokvv) (

The RCS of a US that is characterized by i' becomes

a- CA[ KPAR 12 (3.1Oa)

where PT is the transmitter polarization and PR is the receiver polarization. For a target composed of N
USs,

a | O X;TR 0(3.10b)

The significance of X is that the electric field at the receiver antenna and associated received signals
can be written (see Section 4) in terms of a scattering function '(, ) which we define by

r(pT, PR) A P4)T X|PR* (3.11)

Although this approach to modeling scattering is not unique (similar formulations to obtain RCS and
glint are implicit in other work), the definition of the unit-scatterer is new in that it is based on the
fundamental scattering objects being large, complex, and not necessarily physically identifiable.

Because of the complexity of USs comprising large targets, such as ships, it is likely that experi-
mental methods or detailed simulation studies are necessary to accurately determine the Xi matrices.
However, as is discussed in Sec. 3.4, relatively simple representations of the USs may yield good
approximations to the components of X,.

3.3 Identification

Given the above definition of the US we now discuss methods of identifying the USs on complex
targets. There are two basic approaches to US identification (and characterization): using analytic or
experimental methods. We first consider several analytic methods.

Kell [60] investigated bistatic RCS using the N-source formulation. In this and the next para-
graph, we discuss that work as it relates to the monostatic problem. Using the Straton-Chu integral in
the definition of RCS, he showed that a target's bistatic RCS could be written in the form

lr j2k~zcosfi2P
,- = -j- jJ l(z)e 0 "dz (3.12)

-.- * where

!'. is the wavenumber of the incident field,

-j is the bistatic angle, and

k is the radar's wavelength.

9
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Although Eq. (3.1) is an exact expression, the difficulty with using it is that 1(z) is rarely known pre-
cisely [601. However, the analytic continuity of i(z) allows it to be divided into a sum of integrals over
subregions of the target and "reasonable approximations" to 1(z) lead to contributions from these
integrals only near the end points of each integral [601. These contributions are then identified as the
scattering centers. He distinguishes between two types of scattering-centers: "simple centers," which
result from direct illumination only, and "reflex centers," which result from multiple reflections. He
states that it is common for reflex scatterers to produce much larger RCS values than simple scatterers
do.

Once the sources are identified, the target RCS can be written as a finite sum of those sources.
-- *Kell shows that in terms of N sources, the bistatic RCS can be expressed as (assuming fixed polariza-

tions)

N
__ =- | A, >/i ejoi r(3.13a)

_ ~~~~~~~~~~~~~~~~~~~~~i-I
.. '! ~~writh

- o ~ ,= 2kor, cos p+ (, (3.13b)

where

rj is the distance between the ith and first sources' phase-centers, projected on the bistatic
.: axis, and

, : (is the "res'dual phase contributions" of the ith center.

Setting = 0 yields the monostatic RCS. (We note that to derive the monostatic-bistatic equivalence
theorem in Ref. 60. Kell assumes that the i do not vary over the range of /3 considered; we suggest
that for USs arising from structurally complex objects, the h, may vary significantly as a function of the
nionostatic aspect angle.)

WVhen the magnetic field H on the surface of a perfectly conducting object is known and the field
point is at a large distance from the body, the scattered magnetic field, Hs, can be approximated by
1611

'- Hs_ AR fs (h x fl) x Pe-J' -7'dS', (3.14)4 7r R S

where h is the -utward normal to the surface, k = 27r/X, P is the unit vector from the origin to the
field point. R is the distance from the origin to the field point, S' is the scattering object's surface, and
rT'is the radius vector from the origin to the integration point on the surface. To solve Eq. (3.14) we
must know H and S'. Although obtaining S' for a known object is straightforward, though perhaps
tedious, determining H for an arbitrarily shaped object is in general not feasible. However, for objects
that are relatively smooth (large radii of curvature relative to the radar's wavelength), it is well known

-. that the Kirchhoff (physical optics) approximation (i.e., assume that the surface current Cdnsity is
-2ih x Hi where Hi is the incident magnetic field) leads to an accurate description of the scattered
field. Assuming an incident field of the form

* E0 i 7Hi = - U x e)eiAt;' (3.15)

where e is the polarization direction for the incident electric field E', a is the characteristic impedance
of free space, and E0 = iF'!, the scattered electric field can be approximated by

jEs~~ _ JT -i x (; x ) x e22 jr r'dS'. (3.16)

,._ 10
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I * If the surface can be separated into N independent (no multiple scattering) surfaces for which solutions
to Eq. (3.16) can be obtained, then the object's scattered field can be described by the sum of N fields
(due to the N "elementary" scatterers). In general, N will be large and multiple scattering cannot be

* ignored so that the resulting scattering model will be very complicated (see e.g., Ref. 40). Scattering
centers for complex objects will arise from one of two situations: the return from an elementary
scatterer dominates (in magnitude) the return from most of the other elementary scatterers, or several

* elementary scatterers produce scattered fields that add in phase yielding a total field that dominates

most of the other returns. However, if we cannot make the above separation but we can represent the
(known) surface in cartesian coordinates by

z =f(x, y) (3.17)

so that

C =xi+yJ + f(xy)k, (3.18)

we can apply the method of stationary phase to the integral in Eq. (3.16) if we can find the points on
the surface where

--ax a ' y) = - ( r') 0. (3.19)

The mei hod of stationary phase is an asymptotic expansion technique for evaluating integrals of
the form

I(X) =J g(z)eix(z) dz, (3.20)

where x is a large positive parameter and h (z) is a real function of the real variable z [621. The major
contribution to the integral arises from the immediate vicinity of the end points, and at stationary
points of' h (z) (points where h'(z) = 0) and in the first approximation, the contribution of the station-
ary points is more important than the contribution of the end points [621. If z, i = 1. ... , n are the
points of stationary phase (i.e., where h(z) has extrema), then the integral Eq. (3.16) can l:.e approxi-
mated by

I(x) - f g(z)eJxh(z)dz (3.21)

where the e, are small. The ith element of the summation is evaluated by expanding h(z) about z.
, The method applies to the integral Eq. (3.16) since for wavelengths of interest to us, 2k is large (on

the order of 400).

Kodis [63] investigated the scattering from a random, perfectly conducting irregular surface whiose
radii of curvature are continuous and large. Evaluating the scattered-field integral by using" the method
of stationary phase, he showed that to a first approximation the RCS of the surface is proportional to
the average number of specular points which are illuminated. Although he assumed that there was no
multiple scattering, implying that the principal radii of the surface have a !ower bound that is much
greater than the wavelength of the scattered radiation [631, his results also suggest that the scattered-
field integral can be approximated by a finite sum and that the method of stationary phase may prove
useful in identifying scattering centers of objects that are relatively smooth.

The method of stationary phase is of interest because it identifies scattering centers on the scatter-
ing object. When the method can be used we anticipate that the scattering centers identified by it will

'. * be USs of the object. The method may yield not only US locations but also analytic representations for
those USs; by investigating the scattered field at these points, we may be able to develop analytic
representations for USs resulting from "smooth surface" scattering. Examining the structure of ships we
see that in general their surfaces are not smooth. In fact there are many flat surfaces connected at right

I I
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angles (zero radius of curvature). Therefore the method of stationary phase will not in general be use-
ful for identifying USs on targets such as ships. However, the method may prove useful for targets,
such as aircraft, whose surfaces are, in general, "smooth."

Precise identification of the USs for a specific target will most likely require actual target measure-
ments. Such measurements must be made by some type of high resolution radar. Possibilities include
narrow pulse radar, pulse compression radar, synthetic aperture radar (SAR), and inverse synthetic
aperture radar (ISAR). Such radars must measure, as a function of target aspect, the return signal
from the target in cells that are small relative to the target's largest dimension. Although our studies
will show that even large ship targets can be well represented at a given aspect by as few as six USs, we
suggest a cell size at least as small as 1/10 to 1/20 of the target's largest dimension. The cell size can-
not be too small because for studies of radars with less resolution than the measured data, the smaller
scatterers can be grouped (summed coherently or incoherently) to produce USs appropriate for the
desired resolution. High resolution data exists on many targets including ships but analysis of that data
has not been done as part of this research; the effort required to obtain and analyze such data is
beyond the scope of this report. High resolution radars identify scatterers in range and amplitude for
the associated radar-to-target aspect. Figure 3.1 illustrates such a range profile for an aircraft model;
for this aspect (nose-on) there are five dominant scatterers. By rotating the target or moving the radar,
the amplitudes, reiative phases, and position of the dominant scatterers can be determined as a function
of aspect. Care must be taken to vary the aspect by increments small enough to yield accurate
(smooth) representations of these parameters. Figure 3.2 illustrates scatterer data as a function of
aspect for a simple target.

.,'.

.0

xi

Fig. 3.1 - A high range-resolution radar's output (from Ref. 44)
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Fig. 3.2 - Amplitude-position data for a high range-resolution radar as a
function of aspect (from Ref. 65)

Another method of identifying the USs is to use existing geometric-model simulations. (Various
organizations, including the Naval Research Laboratory (NRL), Georgia Institute of Technology, Tech-
nology Services Corporation, and Rockwell international, have developed such simulations.) This
method involves running such a simulation for the target of interest and for the desired radar-target
geometry. The resulting scattered field would then be examined to identify the major scatterers (say,
those that contribute 95% of the total return) and then grouped as appropriate into USs. Similarly,
SAR or ISAR simulations could also be used to determine the USs. Figure 3.3 is an illustration of the
resulting SAR image from a simulation of a KC-135 aircraft for various SAR resolutions. The "blobs"
in these images are candidate USs.

A less accurate but very simple method of identifying some USs is to examine geometric images
of the target (photographs, line drawings, blueprints, etc.). This method is useful because scattering
from certain generic objects is known. For example, Table 3.1 lists the 22 objects used by Toothman
1401 in a geometric type of simulation of ship scattering. An examination of the structure of ships
shows that there often are obvious generic scatterers whose dimensions are such that they will dominate
the scattering from the ship at specific aspect angles. For example, the broadside and stern aspects of
the DD963 (Fig. 3.4) illustrate the presence of flat-plate scatterers in the superstructure. The aft-
quarter aspects indicate the presence of large corner reflectors and the two exhaust stacks should have
reflections that are analogous to those from cylinders. Using these observations we can obtain a set of
USs that, to first-order, approximate the actual USs for a given aspect. This is the method that we will
use to obtain USs for the simulation (Section 9). In the next two sections we discuss in some detail the
application of this method to obtain US amplitude and phase characterizations.

3.4 Amplitude

The measurement and simulation procedures of the previous section yield amplitude information
and can be used to determine the amplitude functions. The visual method, however, does not allow
such an accurate determination except for obvious geometric objects. For analysis and simulation pur-
poses we would like to obtain closed form expressions for the amplitude functions. Such expressions,

13
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Table 3.1 -Generic Scattering Types
Used by Toothman [401

Concave Edge | Rectangular Plate

Convex Edge Paraboloid

Edge Caustic Ogive

Elliptic Disc Point

Ellipsoid Concave Dihedral (2 reflections)

Hyperboloid Concave Trihedral (3 reflections)

Cylinder Straight Edge (convex dihedral)

Elliptic Cone Convex Trihedral (3 plane tip)

Inner Torus General Curved Surface Specular

Outer Torus Cavities

Elliptc Tip Antennas

.? if accurate, would allow the US model to be more useful in general; the model would not be depen-
-. : - * dent on detailed information about the target. Therefore, our goal in specifying the amplitudes is to

obtain simple, visually identifiable, closed form expressions that are valid over short time-intervals. To
achieve this we rely on optical scattering theories and RCS measurements of distributed targets to guide

-:- our choice of amplitude functions.

It is well known that the spectrum of the RCS of a distributed target is band-limited and it is
often characterized as being low-pass. This implies that a finite (though perhaps large) number of
scatterers can be used to accurately approximate the RCS. It is also known that for most targets, due to

: radar-target relative motion, the target RCS is not a stationary process because the mean, variance, den-
sity type, and spectral properties all vary with aspect as indicated by Figs. 3.5, 3.6, and 3.7. The most
obvious implication of this is that some of the target's component scatterers have amplitude patterns
that vary significantly with aspect. Visual examination of ship structures, for example, finds obvious
flat plates, dihedrals, trihedrals, etc. The RCSs of such generic objects have been calculated theoreti-
cally and are well known. The flat plate RCS, for example, is strongly dependent on plate orientation;

* it varies dramatically near vertical incidence where a very large RCS relative to its physical size is gen-
erated [70].

Mitchell [23] has suggested that there are only four basic scattering mechanisms within a radar
resolution cell. To describe these mechanisms, he defines four basic scattering elements; he claims
that for simulation purposes, they describe all scattering effects. -he basic elements are:

1. rough surface (diffuse scattering),

2. point source (sphere and dihedral corner),

3. flat plate (specular scattering), and

4. line source (edge, dihedral corner, thin cylinder, and wire).

16



NRL REPORT 8887

A-S

Fig. 3.5 - Measured RCS at 10-cm wavelength of a B-26 aircraft
as a function of aspect (from Ref. 68)
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Fig. 3.6 - Measured RCS at 200 MHL for a scale model of a destroyer (from Ref. 69)
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Fig. 3.7 - Variation of the 20, 50, and 80 percentiles for an auxiliary ship as a function of

aspect for (a) S-band and (b) X-band (from Ref. 68)
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In view of this, we propose using a small set of generic functions to model the amplitude functions of
the USs. This set may vary depending on the type"~ of target being modeled. For example, ship models
would tend to include flat sided scatterer types (plates, dihedrals, trihedrals, etc.) whereas aircraft
models would tend to include curved surface scatterer types (ogive, parabaloid, etc.).

In the simulations (Section 9), we model the US amplitude functions using only three generic
scattering types: sphere, flat plate, and corner reflector. These types were chosen because they
represent, to first order, the most obvious scattering effects and they are consistent with the fundamen-
tal set proposed by Mitchell. The fidelitv of the model by using only these types of scatterers must be
determined relative to measured data which we do not have access to for this report.

The sphere type was chosen to represent scattering that is specular but is also significant (in
amfnp!itude) over a wide angle of illumination. We model the amplitude of such a scatterer as being pro-

i: portional to the projected area of the object as viewed by the radar, as it is (in the optical limit) for a
sphere (331.

To represent scattering that is specular and highly directional, in analogy with the equation for the
* - RCS of a flat plate near specular incidence we suggest the representation

A 214 ab sin'(27ra sin G) sin (27rb sin 1)
Act j 27ra sin 0 27rb sin (3.22)

where a and b are the plate dimensions and 0 and 4 are azimuth and elevation angles between the
plate and the radar-to-US sight line and a line perpendicular to the flat surface. We anticipate that this
type of US will be realized by actual flat plates which for a ship appear primarily at the bow, stern, and
broadside aspects. Unlike the sphere type of US, this type is frequency dependent.

* The corner-reflector type was chosen to represent frequency-dependent scattering that is nonspec-
ular. This type of scattering results from multiple reflections (61]. We model the associated amplitude
by the ratio of the US's projected area to the radar wavelength. This is analogous to the equation for
the maximum RCS of a corner reflector,

C 4max = A2 (3.23)

- . where a is the area of the reflector's aperture [611.

3.5 Phase

For a point-source scatterer located at some position R relative to the radar, the phase of the scat-
tered field at the radar results from the properties of and the range to the scatterer. For a sphere the
phase varies as the range to the sphere's center varies but is constant with sphere orientation. How-
ever, for nonspherical objects, the phase depends not only on some location point for the object (say,
its geometrical center) but also on the object's orientation. This is because as the object rotates,
scattering from components of the object (edges, protrusions, etc.) vary as a function of aspect. This
apparent point-source location of the object is called the object's scattering center. Aggregating several
physical objects may create a US of substantial physical size relative to the radar wave length. As such
a scatterer rotates, the scattering-center location may vary rapidly fer the wave lengths of interest in this
report (on the order of a few centimeters). Therefore, the US phases (the X L, in Eq. (3.8a)) are defined
as the apparent location of the US's scattering center relative to some fixed point on the US, as a func-

* .,- tion of orientation.

i The scattering center will also depend on the type of ranging technique employed by the radar.
For example, narrow pulse, leading-edge tracking will yield different apparent ranges for scattering
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objects than will peak-signal techniques. However, in our development we do not attempt to explicitly
include ranging-technique effects primarily because of the lack of existing data describing US phase-
variations as a function of orientation.

We suggest that there are two dominant physical causes (excluding multipath effects) of variations
in the US phase for small changes in aspect angle. First, we expect the most significant phase varia-
tions to be caused by the motion of the surfaces that yield the USs; that is, the relative motion of the
geometric center. Second, we expect that US rotation will also introduce phase variations. We expect
two types of effects due to US rotation: low frequency and high frequency. The low-frequency effects

rho should result from the objects that generate the US moving closer or farther away from the radar, thus
producing a change of phase (due to earlier or later pulse arrivals). The high-frequency variations

*.- should result for USs which arise from the relative phasing of various objects. As the objects rotate,
their relative phasing may change producing glint [Section 81, which is a high-frequency phenomenon
[Section 9]. However, we expect this effect to be small because glint is inversely proportional to RCS
and the existence of the US implies a large RCS.

We will model the US phase by

- k(ROo, t)' =- | 2 Ik +/3(0) +(co, 1) (3.24)
._~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A

where

: R is the location of the geometric center relative to the radar,

0 is the orientation of the US relative to the radar,

* is the radar's wavelength,

p( ) represents the low-frequency orientation effects, and

.(co, t) represents the high-frequency effects.

Because of the causal relationship between US motion and target motion, the {(w, 0) process should be
correlated, to some extent, with the target motion. The variance of ~((a t) most likely will be small

:; relative to 2 7r, otherwise ((, t) could be approximated by a phase process that is uniformly distributed
- * over (0, 2 7r). This would yield a target RCS that is Rayleigh distributed (see Section 7) which is in

general not true. This observation is consistent with our comments in the previous paragraph.

Because of the lack of experimental data and the intractibility of US-phase analysis, we will not
attempt to model or simulate the (a, t) process by other than uniformly distributed, uncorrelated
processes. The interval over which the processes are defined are specified, in a simulation input, as a
percentage of the radar wavelength. Simulation results have indicated that if the random phase varia-
tions on a pulse-by-oulse basis exceed about 5% of the radar wavelength, then they become a signifil-

*~< cant cause of variations in the scattered field, which intuition suggests should not happen.

Finally, we expect that for small changes in aspect angle, scattered-field variations are due pri-
marily to phase variations rather than amplitude variations.

4. MODEL OF THE RECEIVED SIGNAL

-S * Although a radar measures the EM field at its antenna aperture, evaluation of a radar's perfor-
mance can be made knowing only a few projections of that field. The most useful projections are
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received power (RCS) and the azimuth and elevation error signals (glint). The validity of any model of
the scattered field that is to have practical applications *.ust be measured relative to such projections.
In this chapter we formulate the received signal resulting from scattering by an N-source target that is
modeled by unit-scatterers. We develop representations for the received field and the associated

| azimuth and elevation error signals. The received fiela representation is used in later chapters.

K ; 4.1 Scattered Field

Because we are modeling the target as a finite number of USs, the received electric field at the
radar is the linear superposition of the fields froin each US. We are interested in representing only the
pulse-to-pulse variations in the received signal, not intrapulse properties, so we assume that the
received pulses are idea! in the sense that they are completely defined by an amplitude, phase, and

;-. pulse-width. Further, we assume that the target extent is small relative to the radar-to-target range and
that the radar pulse width is large relative to target extent. This allows the assumption that the return
pulses are time coincident. This time-coincident assumption would not be acceptable if we were analyz-
ing range tracking errors or the structure of the received pulse's leading or trailing edge.

Assuming uniform target-illumination (due to large radar-to-target range) and identical
transmitter and receiver polarizations, the received field at the radar due to scattering by a point-source
target is usually represented by an equation of the form

E(R,,0,, 1i) = F2(Rj) g(R,)aj(0i)eji4i " ̀ )ej`'' (4.1)

where

X is the radar frequency,

X Ri defines the location of the scatterer relative to the radar,

: 0V defines the orientation of the scatterer relative to the radar,

g( ) describes the antenna and propagation effects on the signal,

* F~F) describes the effects of multipath,

a, is the amplitude of th2 scattered field, and

i- .(, ) is the -hase angle of the scattered field.

Three transmit path effects are accounted for here: phases due to radar-to-scatterer path lengths,
attenuation due to path losses, and variations in the illuminating signal due to multipath. The phases
are accounted for in I(, ) and the loss effects in g( ). The multipath effects are discussed in detail in
Sec. 4.4, so for the remainder of this section we assume that F2 ( ) I (i.e., no multipath effects).

Summing the individual fields from an N-source target, the received field becomes

E(t)= W g(kj)aj(0j)ej'( e'@'. *e(4.2)

'-~~~~~~~~~~~~~~~~~~~~~~~I I_
The assumption of long range implies that

g(ki) = g(kj), for all i,] (4.3)
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5 so that we can approximate E(t) by

Ez) - g (k)e X, aj (0j)e eJ'i Ti~i) (4.4)

where R locates a fixed point on the target; for example, the target's center-of-gravity. Assuming that
the N sources of the target are USs, we see from Eq. (3.11) that

E(t) = g(R)eJC F(Pr, PR) = g(k)eJw Iht Xi(ki, Ai)JPR (4.5)

where hT and PR define the polarization that is implicit in Eq. (4.1). If we make the usual assumption
that PR -PR = (1, 0 )T, then Eq. (4.5) becomes

N pjb1 (91i.)
E(t) = g(R)e1 '~` SAl,(Oi)e i . (4.6)

We next discuss the effect of the.± radar system on the scattered field.

4.2 Radar System Model

Although our primary concern is target-scattering modeling and not radar-system modeling, prac-
tical validation of any scattering model will of necessity involve actual target measurements made by
specific radars. Further, we are concerned with scattering models from the point of view of analyzing
the effects of target scattering on tracking radars rather than that of predicting scattered electric fields.
Therefore for completeness, we include a representation of tracking radars that can be used with the
US-model formulation.

We view tracking radars as being composed of three basic functional units: a "front-end," error
detectors, and feedback loops. Figure 4.1 is a block diagram of a generic amplitude-comparison, mono-
pulse radar with each functional unit indicated. Such a radar is commonly used as a tracking radar at
microwave frequencies. Because this type of radar is widely used in practice, we limit our model of
radars to this type. This limitation does not significantly restrict the results to be obtained because the
primary influence on tracking performance is the fluctuation of the field scattered from the target.
Further, phase-comparison monopulse has been shown to be functionally equivalent to amplitude-
comparison monopulse [711, and other forms of tracking radars (e.g., sequential lobing, conical scan,
etc.) differ primarily in the form of the front-end transformation and error detector implementations.
In any event, the US concept is independent of specific radar implementations.

4.2.1 Front-End

We first consider the effects of the radar front-end: the components that transform the input EM
field (at the antenna's aperture) to a complex signal at some intermediate frequency (IF). This IF sig-
nal is then processed to obtain tracking information. Our approach is to model the components that
convert the input field to an IF signal as a simple, memoryless transformation, which we represent by

V(t) = H[E(t)] (4.7)

where V(t) is a voltage. In general, the front-end transformation, H(-), is very difficult to specify pre-
cisely because it includes the effects of the antenna, waveguide, hybrids, mixers, and IF amplifiers.
Clearly, H(O) depends strongly on the specific radar implementation, particularly the antenna used. For
the applications of interest here (where target-radar motion is causing the major fluctuations in the
received signal), these devices can be accurately characterized by simple models: hybrids with input
signals A and B as producing outputs A+B and/or A-B, mixers as transforming signals with spectra
ScV) (a > Co) to signals with spectra S() - ) (c - ,)or > 0) where corn is the mixer frequency, and
IF ampli ers as constant gain (or logarithmic) devices with feedback gain control. An overall power
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Fig. 4.1 - A two-coordinate (azimuth and elevation), amplitude-comparison,
monopulse tracking radar (ada:;ted from Ref. 68)

loss, due mainly to the hybrids, and an overall phase shift, due mainly to physical lengths and the
mixers, complete the description of the guided signals. The v deo signal is produced by detectors
(amplitude, phase, or sum-and-difference [711) that transform the guided fields to voltages. The most
complex aspect of H(O) is the transformation of an EM field across the antenna aperture to an EM field
within an associated waveguide. This transformation is typically represented by the antenna amplitude-
gain pattern (to be referred to as the antenna pattern).

Since we assume that the scatterers are point-source radiators which are at long range, it will be
sufficient (as has been the case in many other studies; for example, see Refs. 72 and 73) to model the
front-end as the antenna pattern coupled with a complex gain factor and a frequency shift. Specifically,
if the antenna amplitude-gain (complex in general) is given by GGaX, Be) where fla and t3e represent
azimuth and elevation angles relative to the radar boresight, then for a point-source target whose angu-
lar coordinates relative to the radar boresight are given by (8a, Pe), we model the front-end transfor-
mation as

V(t) = H[E(t)] = KG(al, P e)E(aQ3p 1ses t) (4.8)

where K is complex and represents the nonantenna front-end gains and phase shift, and E0(Ia,P,,e t)
is the value of the scattered electric field at the aperture location defined by Pa and le. The carrier fre-
quency of V(t) is the frequency of E0Q3a, P,, t) lowered by the mixer frequency.

Because we are assuming tracking, we are only interested in antenna characteristics near boresight,
say +3 dB about the main beam maximum. Therefore it may be useful to assume an ideal approxima-
tion for the antenna pattern that has a simple analytical form yet accurately represents typical antenna
amplitude-gain Characteristics in this restricted region:

G(0, A) Go - k(0 - Oo)2 - k(tp - -po)2 (4.9)

where 00 and qg define the pattern maximum relative to a given radar axis (say, boresight) and Go and
k are constants. However, we note that the long range assumption will often allow the antenna pattern
to be modeled as a constant gain because of the resulting negligible separations of the unit-scatterers.
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* 4.2.2 Error Detectors

ma The error detectors transform guided EM waves to video signals useful for determining antenna
pointing (angle) errors. Rhodes 171] has shown that in monopulse radars there are only three distinct
kinds of angle detection: amplitude, phase, and sum-and-difference. Because any monopulse error law

*- can be described as a function of the difference-to-sum ratio (A/W ) [741, we model the detectors as
*- producing sum and differenc.e signals which yield as output A/2. Assuming instantaneous automatic

gain control (IAGC), the outputs ol the phase-sensitive detectors of Fig. 4.1 are the real part of A/>:
due to the sum signal being fed back to the various IF amplifiers [71].

4.2.3 Feedback

* There are two feedback loops of interest: IF amplifier feedback and antenna servomechanism
(servo) feedback. The amplifier feedback is simply a feedback of the sum signal to control the IF
amplifier gains.

Angle error s'gnals that are output from the detectors are used to control the pointing direction of
the antenna. This is done by feedback of these signals to servos that control the position of the
antenpa. Type II servos are usually employed for this purpose [68]. We note that the long range
assumption (implying small angular separations of the scatterers) will often allow the effects of the ser-
v s to be ignored.

4.3 Received Signals

We now describe the received signal in terms of the scattered field. First we define, in earth- or
radar-coordinates, the radar boresight direction PBS = (Pa, Pe), and the radar-to-ith scatterei sight
line,

_ ,*i = (pBai, PeS). The antenna gain associated with the ith scatterer is then given by G(p, -7 BS) where

G(j -PS) = G(/3 a Pe -Pe) (4.10)

With this definition each IF signal has the form (from Eqs. (4.8) and (4.5))

VW() = g(TRe) e m X KG (/3j - [3 ) PTX,(R;,0i) PR- (4.11)

-More specifically, there are three signals of interest: one sum and two difference signals. Each
signal has an associated sum and difference pattern (Gz(P), GAo(®), and G. ()) and complex, front-
end gains (Ks, K., and K, ). Suppressing the first two terms of Eq. (4.11), the sum, azimuth-
difference, and elevation-difference signals become

N _

- V(t) = KE A G£(P, -,B )BSPT (j, 0,)PR, (4.12a)

* ~~~N
VA(t) = Kra ,, Ga. (13,- S)bTX(R 1, OI)PR, and (4.12b)

_ ~~~~~~~~~~~~~~~~~~~i-I

Vae(t) = KA e X Ge(, - fBSpTri(Ri,0j)pR (4.12c)

The three antenna patterns are derived from Eq. (4.9) where we have assumed that each of the
four radiators that comprise the antenna have identical patterns and that each is offset relative to the
radar boresight. The sum pattern is represented by
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* p. ~~~~~~~~~~~~~~4 4

Gx(Wi)= Gy(P.Pe) ~G (a, Pa Pe ,- Pej)= ,G(- ) (4.13a)

where 71 = bard Pe) represents the associated radiator's offset relative to the radar boresight. The

difference patterns are represented by

G~ia(pj)= 1G G( 3) G P 2)-G 1-3 4) (4.13b)
-l ': and

G.Ae (j) Go -1) + Go -2) Go -3) - GW-p4). (4.13c)

Equation (4.11) is our fundamental representation of the monopulse-radar received-signal due to
N point-sources. Representations of this for radar-system have been used for analyses by others; the
most common use assumes a mix of independent processes and deterministic functions for one or

* *:.. several of the target parameters (e.g., Refs. 11, 19, 20, 23, 24, 25, 75, and 76).

! . 4.4 Sea-Surface Multipath Effects

If the target is a surface ship, then for small and moderate radar-to-ship grazing angles, sea-
surface multipath affects the received signals. These multipath effects alter both the signal illuminating
the ship and the scattered field.

As discussed in the introduction, the effects of multipath on the received power of a signal
: -: transmitted by a point source is well understood, but an apparent-point-source representation of the

scattered field has only been determined for the specular component. However, because the 'diffuse
scattering arises from scattering over a large area, there are at least several scatterers comprising the
ship at any aspect, and because we are interested in only a representation of 'average' seas (determined
only by a sea-state parameter), we will model the diffuse vector's location point as the associated
target's image-point. Although we will develop glint equations using this model, clearly it is not restric-
tive and the method applies for other diffuse models as well.

To be consistent with the multipath models employed, we assume that the radar's antenna has a
beamwidth wide enough to fully illuminate the first several Fresnel zones about the specular point

* (defined in Fig. 4.2). We note that this assumption will hold even for relatively narrow beams if the
radar-to-target range is large. Because of our assumption of low giazing angles and the reasons stated
above, we also ignore time delays associated with the multipath signals, noting that when analyzing
range-tracking errors such delays should be accounted for.

-- RADAR
DIRECT SIGNAL POINT-SOURCE TARGET

\4,h,

SPECULAR h,
h _ * POINT

IMAGE-SOURCE
LOCATION

Fig. 4.2 -Multipath geometry
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Beard et al. [46] show that if the received field is D without multipath effects, then with mul-
tipath effects the received field becomes

T = D t R (4.14)

where the total received field, T, is the sum of the direct field, D, and a reflected field, R. The
reflected field appears to the receiver to be transmitted from a point located at the transmitter image
reflected about the plane of the sea surface (Fig. 4.2). The reflected field is modeled as the sum of two
components, one that is deterministic and coherent, relative to the direct field, and one that is stochas-
tic and incoherent,

R= C + (4.15)

The coherent and incoherent fields are also referred to as the specular and diffuse fields. For conveni-
ence Eq. (4.14) is usually normalized relative to the direct field D by

T= FD, (4.16a)

where F is a multipath coefficient defined by

F I+ Pc + P, (4.16b)

where

pc =psei", (4.16c)
and

pi :~ pP + JPQ. (4.16d)

The phase angle a is due to path length differences and sea-surface reflection characteristics. The in-
phase and quadrature terms, pp and pQ, are zero-mean Gaussian processes. Curves defining the vari-
ance of the p, process (assuming that pp and c Q have equal variances) are presented in Ref. 49. To
account for the fact that the scattering coefficients Pc and pI depend on geometry we use the notation

F = F(R. 0), (4.16d)

and for the ith US we abbreviate Eq. (4.16d) by

F. = F(RC,,,). (4.16e)

Because the sea surface, radar, and target effectively do not move during the time of pulse
transmission and reception at the radar (for the problems of interest here), the transmit and receive
modes are reciprocal. Therefore the transmit and receive multipath effects are identical except for the
effects of the transmit and receive radiation patterns of the antenna and target.

Because the ship is close to the scattering surface, the multipath image locations are close to their
associated scatterer locations. Note that if the antenna pattern and geometry are such that G(p, - PBs)

G (pj - Pus) for all i and j, then the received signal can be approximated by

j( ~~~~ N
*CV(t) = g(The ( KG(G -Bs) AX, p (Rj, Hj)PR (4.17)

However, if the antenna effects on the direct vs the reflected signals are to be accounted for, we must
view the reflected signal as arising from a source located below the surface of the sea. As is often done
[49] we model the source-location of the reflected signal as the apparent location of the specular reflec-
tion (Fig. 4.2).

To modify the equivalent-point-source multipath coefficient Eq. (4.16a) to become an N-source
model (N = 2), we view the problem as follows (where for clarity we assume that the propagation and
scatterer reflection effects are accounted for in g( ) and X(-, )). Assume that the incident field at the
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- K-- scatterer has the form E = FEo where E is the direct field (no multipath). Then if we view the
scatterer as transmitting the signal FEO, then the signal received at the radar will be F2EO. From the
point of view of the radar, the received signal appears to have a direct component D = FEO and a
reflected component R - (nc + p,)FEo. Therefore we separate the two-way multipath coefficient F2

for the ith US into direct and reflected coefficients:

E; = F/1E0 - (I + PC + Pj,)F/Eo

- FE 0 + (Fi- I)F 1 Eo = Di + Ri. (4.18)

I t *Finally, we need the direction of propagation for D1 and R1.

If in a given coordinate system R, locates the ith scatterer and RR locates the receiver, then the
direction of propagation for the ith direct signal is given by

RDj= RR - RX. (4.19)

| In Earth-axis, cartesian coordinates,

* I. RD = (RXR-RX, RyR- RY,, hR-hi) (4.20)
where hR and hi are the heights of the radar and the ith source above Earth. Therefore the direction

.-. of propagation for the direct and reflected field components are

Di =I-DI(4.21a)

and

RR
.R = , i I RR, I(4.21 b)

where

. -RR _ (R -RR,, RX R - Ryl' hR + hi). (4.22)
.- ~~~~~~~~~~~~~~~~~X

With the separation of Eqs. (4.18) and (4.21), we see that by viewing the reflected fields as an addi-
tional set of A' scatterers, Eq (4.11) becomes

'-V() =g(R)ej "_'"'K G(fj - Bs)F, + GQ,+N- PBR)F,(Fj- T))pT,, (4:23)
. .~~~~~~~~~~~~~~-

Though we use this point-source model to account for the effects of multipath, USs result from
* surfaces that are distributed in space. When there is no multipath vie can represent the scattered field

from a US by

WU sjzI F [Ix U( x e x ie''2jA;''dS'. (3.16)
2-;rR s 7'

Using the point-source multipath model to represent the incident Field, wve represent the scattered field
in the presence of multipath by

ike 27R Is F2 ( x (; )1 x Fe- 2l' s'''' (4.24)

^-.-~~~~~~~~~~~~~~~~2. 
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where F(I') represents the complex multipath factor at the point F'. If over S',

:5 F(r) = F0, (4.25)

then we have the pcint-source representation described above:

ES = F.Es. (4.26)

Although data collected by NRL and analyzed by the author indicate that F(, ) can often be approxi-
mated by an azimuth-independent process over relatively large variations in azimuth, other data have
shown [771 that F(r) rapidly decorrelates in elevatior. Therefore for most USs, representing Emp by
Eq. (4.26), with Fo = F(77) where 77 is the ith US location, will not be valid. The difficulty raised
here is, to our Knowledge, an open question: can the target effects and the multipath effects be
represented in kq. (4.24) in a way that yields an equivalent-point-source model for the scattering?

As stated above, the point-source multipath model is valid when the transmitting and receiving
amplitude patterns (gain pattern for an antenna) are not narrow. This constraint will likely hold for the

-. - sphere type and corner-reflector type of US amplitude functions. For the highly specular flat-plate type
a. modification to the multipath effects may be required analogous to the antenna gain-pattern correc-

-. l tion suggested in Ref. 49. Such a modification was not made in the simulation.

* - Because multipath is but one parameter (though an important one) affecting the ship scattering
and because the point-source model presented here is the only validated stochastic model of over-water

l ; multipath that we are aware of, we have used it in our simulation studies. In Section 9 we discuss
resolts obtained using this modeling approach in the simulation.

^-. 5. UNIT-SCATTERER-NMOTION 10DELS

In this section we develop equations of motion for an arbitrary US location because this motion
determines the amplitude and phase variations in the received field. Our purpose is not ship-motion
modeling per se but US-motion modeling for use in analyzing and simulating scattered fields. How-
ever, for completeness we investigate two basic approaches to ship-motion modeling. In Sec. 5.2 we
formulate a motion model that assumes knowledge of the sea forces that cause ship motion. Then in
Sec. 5.3, we discuss a frequency-response model that has been quite useful in ship-motion modeling
given knowledge of the sea spectrum. The DTNSRDC has used the model to generate libraries of
center-ol'-gratity-iotion (cg-motion) spectra for various ships (e.g., Refs. 78 and 79). In later chapters
we begin our analyses and simulations by assuming knowledge of these cg-motion spectra. Because

- these motions are zero-mean Gaussian, the associated spectra are all that is required to completely
specify them as stochastic processes.

- * Our reliance oii the DTNSR[)C spectra is not without its costs. Because of a strong desire to
.- develop models that are intuitively appealing and easy to work with (assuming a minimal background in

mathematics), the sea-surface model that has been developed by the oceanographic community is in a
form that is nonstandard relative to the system-theoretic formulation. The differences are slight but
conjUSing and cant lead to errors if not correctly accounted for: the spectrul is defined for positive fre-

- quencies only and so that the integral of the spectrum is the energy in the sea surface (at a point on the
-urlace). To minimize the confusion that would result when the tabulated spectra are used in a simula-

j- t!on, we have chosen to follow the nonstandard, oceanographic specirLim-formulation. This allows us
to directly use the tabulated (nonstandard) spectra.

_' 5.1 Approaches to L.inearization

We use linear equations because they are widely used in the study of both ship and aircraft
imotion aind are easy to work with. We are interested primarily in small deviations in the target's
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motion from a nominal trajectory, and also in target motion modeling only over relatively short periods
of time (usually on the order of seconds to no more than several minutes). There are two basic
approaches used in developing linear equations of ship motion. The first approach is to transform
Newton's six nonlinear force and moment equations from the target's cg axis-system to an axis system
that is determined by target symmetry. The equations are then linearized in the symmetry axis-system.
We call this the transform-first approach. The second approach is to assume linear, second-order dif-
ferential equations in the cg axis-system to describe the six forces and moments. Thor various coeffi-
cients are then estimated via calculations or measurements. We call this the linearize-first approach.
The choice of approach usually depends on the ease of obtaining values for the equation coefficients
and the feasibility of measuring the modeled forces and moments for the target of interest.

The transform-first approach to linearization is strongly dependent on target structure, especially
symmetry. Using this approach, various sets of linear equations have been developed for ships and air-

* craft. The form of these equation sets varies depending on intended applications.

The linearize-first approach begins with a set of linear, second-order differential equations for the
ship's cg-motion. Therefore assuming rigid body motion, the equations of motion for an individual US
have the same form regardless of target structure. We will use the linearize-first approach in develop-
ing ship motion models that are useful in ship scattering studies.

5.2 Motion Equations Given the Driving Forces and Moments

We begin by deriving a set of motion equations for an arbitrary US location by assuming
knowledge of linearized equations of motion for the target's cg and the driving forces and moments.
We also assume that the target undergoes only rigid-body motion and that the six motions of the target
are uncoupled (i.e., u = x, v = ',..., r -

b s5.2.1 Definition of the Axis Systems

We use two axis-systems in describing US motion: an Earth-axis system and a target-body axis
system. Each system is right handed with z-axes that are positive upward (relative to Earth).

The Earth-axis system is fixed relative to Earth's surface (assumed to be flat) with its origin
located at some fixed but arbitrary point relative to Earth's surface. The x-y axes-plane is

. - located parallel to the plane of Earth's surface and the z-axis is oriented positive upward. Vec-
tors represented in Earth coordinates have no superscript.

The target-body axis-system is fixed relative to the target with its origin at the target's cg. The
x-axis is parallel to a longitudinal line-of-symmetry for the target, positive forward. The y-axis
is parallel to a transverse line-of-symmetry for the target. The z-axis is positive upward. Vec-
tors represented in target-body coordinates are superscripted with B.

Figure 5.1 illustrates these axis systems.

5.2.2 Motion Equationsfor the Target's Center of Gravity

Following the notation in Ref. 80, the six equations of cg motion ha% e the form

Mdi + N, = + Rix, - F(w, t), i -1,..., 6. (5.1)
dt2 dt
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Fig. 5.1 -The fundamental axis systems and position vectors
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In Eq. (5.1) we use the notation F,(co, t) to describe each input force and moment. We assume that
the F1Go, t) are stochastic processes. For convenience we rewrite Eq. (5.1) as

d2

+ 2h, -- + vPx1 fi(o, 0, i = I, ... 6 (5.2)

' where 21h, represents a damping factor and VP represents a natural undamped frequency of oscillation of
* the target. Writing Eq. (5.2) in state-variable format we have

x,= AjY, + Bjf, (5.3a)

where

Ai= 2hj (5.3b)

and

(5.3c)

. ~ ~ ~ ~ ~ ~ xi--~~~~~~~~~~~~(x,,i-T~

(5.3d)

7- (0, r;) T.

We define the state of the target-motion system as the vector of position and velocity variables of
the six motion equations:

x = (x, i, y, 5' Z, 2 X, 0s 0, ' q,) T (5-4)

where x, y, and z are the linear coordinates, and &, 0, and tp are the angular coordinates of the target's
- ' cg. Because the motions are assumed to be uncoupled, the state vector becomes

x = (x, II , P. z, W. V . p, 0, q, qA, r)' (5.5)

where u, v, w, p, q, and r are the usual variables of a six degrees-of-freedom model; that is, II, PI
and w are the linear rates of change and p, q, and r are the angular rates of change. The system dif-
ferential equations can now be wriiten in the form

x-= AYx + Bf (5.6)
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where Ais a 12 x 12 matrix with the form

0.s ~~ ~ ~~~~~~~~~~Ay°

*, ; 5 _ ~~~~~~~~~~~~~~~~AZ (5.7)

with the A, defined by Eq. (5.3b). The B matrix is the 12 x6 matrix (from Eq. (5.3c')

1 0 0 0 (5.8)
0 0 0 1 0 01

0 0 0 0 0 00 0 0 O O .

The input vector is

f7 (V fys f.- f o, f e, f (5.r

For given hi and vP coefficients Eq. (5.6) can now be solved. The solution is

(t) - 4(t)X(0) +f 0 4(t - T)Bf(T)d2T (5.10)

where O(t) is the 12x12 block diagonal matrix
NE

.~ ~ ~ ~ ~ ~ ~~~( W

0~t O(t) 0

Each (Pi(t) in Eq. (5.11) is the 2 x 2 transition matrix associated with the appropriate A, from Eq.

(5.3a).

5.2.3 Motion Equationsfor the Unit-Scatterer Locations

The location of the ith US (ith point) on the target (in iarth coordinates) is given by

() (0) + W(T) dT
-(Rn Ry, R.,)T (5.12)
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where Pi (t) is the velocity of the ith point, and R. (0) is the initial location of the ith point. Now

Vi(() = Vcg(t) + &(t) X (5.13)

where Vcg(t) is the linear velocity of the target's cg (VPg(t) = (u, , w)T), a(t) is the angular ve-

locity of the target (J(t) 5 (p, q, r)T), and RB = (X., y,, Zi)T is the location of the ith point relative
to the target cg in target-body coordinates (which, for rigid bodies, is constant) so that

R1(t) = A1(0) + f0 [V(T) + E;i ) X k;B(T)I dT. (5.14)

Expanding the cross-product term we have

a x R,8 = (z q-yir)i + (x;r - zp). + (yip - xq)k. (5.15)

Equation (5.14) can now be written in the form

RXj(t) Rx(0) ; u + (zjq - y r)

Ry,(t) = Ry, (0) + fo v + (.vi r zip) dT

'? (t) R (0)

U

* ~~~R,,(O) I0 0 0 Z 
Ry(0) + fo 0 1 0 -z, 0 Xi w dir. (5.16)

RZ, (O) O O I y, -xi O rq
r

By the decoupling assumption (Eqs. (5.4) and (5.5)), Eq. (5.16) becomes

X

r[l 00 0 zi -;'J 
R,) = R,(O) + |,, lO I 0 -z* 0 O d- (5.17a)

0 01 y, -xi 

=R. (0) + T,x-dr (5.17b)

= A;(0) + T. x (t) - Y(0)] (5.17c)

where x is defined by Eq. (5.4) and

I00 0 00 0 0 zi 0 -y 0J
Ti = 0 0 1 0 0 0 -z, 0 0 0 xi 0 . (5.18)

0y0 0 0 1 0 y 0 -x,0 00 

Substituting Eq. (5.10) into Eq. (5.17c) we have the position of the ith US as

R = R,(0) + T,4(to)(O) +fo (t - T)Bf(T)dTJ- T x-()

= R,(0) + T. f(F(t) - 4P(0)) + o 0(t - T)BI(T) di. (5.19)
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Next we wish to obtain the components of the impulse response matrix for the motion of the ith

scatterer (in Earth coordinates). Relabeling (see Eq. (5.11)) the transition matrix as

C 1
N~t) -

(D2 0
(D3

0 (DS
06

(5.20)

(5.21)
j4)I.21 4)I22J

01,11

101,12
0

0

0

T'4(t) - 0
0

0
O'-5 ,1

so that the impulse response matrix becomes

-1,12 °
l we ne t h212

O O

Finally we note that

Tl[(t) - (0)L](0) =

0
0

02,11

02,12
0
0

-ZiO4,1 1

-Z/04,12
0

0

0 0

0 -Zj0 4.12

03,12 Y004,12

(01,11- 1)
01,12

0
0

0

0

0

zi0,1- 1)
ZO1 2

-Y(406,11 - 1)

-Yi06 12

0

0
0

0

03.11

03,12

IY, 4,11
t Y04,12

-XiS,5 11
-Xi05,12

0
0

X,#5,12

-Xi 05,12

0
0

(2,11 - 1)
02,12

0
0

-Z (04,11 - lj
-i4,12

Xi(O 6,11 -1)

Xi(A6,12

(04 11 - )x0 + 01,12UO + Z(05,11 -l)0o + Z,05,12qa - .vYG(6 ,'1 - i)0 - Y06, 12ro

(02.11 - )yO + 02,12, O - Z,(44 i11 - 1)0o - Z,44,12qo - x k(06,11 - i) 0 + xA,112ro

(03,11 - 1)zo + 13,12wO + yA(-04,11 - l)0o + Y,04,12qo - xi(05,11 - l)ot - XAk12ro.
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we have

(5.22)

V

f 4,

I

41 6,121

01

T0
0

0
0

(03,11 - 1)
03,12

Yi(04,11- 1)

YA ,12
-Z(05,11 - 1)

X005,12
0
0

(5.23)
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5.3 Motion Equations Given the Sea Spectrum

Although ship-motion studies date back to Froude [811 and Krylov [82], it has only been within
the last 30 years that ship motions in realistic seas have become predictable with some confidence [83].
The sea surface (waves) causes most of the nonmaneuvering ship motion and the major difficulty in
modeling ship motion was the lack of an accurate model of this surface. The early sea-surface models

-* *were deterministic and therefore, because of the complexity of the surface, quite limited. In 1952, a
stochastic model for the sea surface was introduced by Pierson (84]. Then in 1953, St. Denis and Pier-
son [80] introduced a ship motion model that coupled the stochastic sea-surface model with linear
ship-motion equations to produce a method of describing ship motion that is still used today. The

; - linearize-first model of this section is based on this method.

5.3.1 Assumptions

.A There are four fundamental assumptions made by St. Denis and Pierson that allow the lineariza-
tion of the ship motion equations. They are (801:

(1) The theory is restricted to vessels of the displacement type (e.g., this excludes planing and
hydrofoil craft).

(2) The Froude-Krylov hypothesis holds: the waves act on the ship but the ship does not act on
the waves.

(3) The theory is restricted to uncoupled motions, and the motions are assumed to be independent
(e.g., this restricts the theory to vessels where the water-planes are quasi-symmetric fore and
aft).

(4) The motion response is assumed to be a linear function of the exciting, restoring, damping, andb inertia forces (e.g., this restricts the theory to vessels that are wall sided).

Given these assumptions, each of the six (decoupled) motions can be described by a linear equation of
the form

- + 2h dx + fX f W. (5.25)
dt2 dt M *(.5

Of the six possible motions (referred to as roll, pitch, yaw, surge, sway, and heave), three are
dominant contributors to the ship motion: heave, pitch, and roll. However, for generality we include
all six motions in the solutions.

5.3.2 Sea Surface Model

As stated previously, the Pierson sea-surface model is the basis for describing ship motion. This
model describes the height of the surface (wave height) relative to its mean-level as a function of posi-
tion and time. The model is a second-order, Gaussian stochastic process with a spectrum that is direc-
tional. The spectrum is the most important parameter of this model, and various models for it have
been developed including those by Neumann [851, Bretschneider [86], and Pierson and Moskowitz
[87]. In general, experimentally measured wave height spectra have the following major characteristics
(cj > 0):

* The spectra are smooth.
* There is a dominant frequency (single mode).
* The spectral shape is "bandpass."
* There is asymmetry to the spectra; there is more energy in the higher frequencies.
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Figure 5.2 is an illustration of a spectrum exemplifying these characteristics. Next we present a descrip-
tion of the sea surface using the nonstandard, oceanographic approach.

p1

0f

'U

0 0.5 1.0 1.5 2.0

WAVE FREQUENCY. w (RADIANS/S)

Fig. 5.2 - Sample Bretschneider wave spectrum: To is the modal wave
period (from Ref. 78)

Given a process 77(t) that is stationary, an autocovariance R (r) and a spectrum F(.) for the pro-
cess can be defined by the relations

R(T) -JU. eJ"7F(o)do) (5.26a)

and

F(O)- ' I e-l"'R (r)dr.
27r -'

(5.26b)

Note that associating the 2ir with the forward transform allows the variance to be defined as simply "the
integral of the spectrum." The "spectrum" of the sea surface, S(w), is defined for positive frequencies
only by

S(w) - 2F(w). (5.27)

Because wave height is a real process, Eqs. (5.26) are usually expressed as the real cosine transforms

R (i-) - cos corS(O)dc (5.28a)
and

S(w) - 2 o0 cos wrR (i)dr. (5.28b)

The Gaussian sea-surface is represented by the stochastic integral

Th)e cos (iEt + q(0) 2S. (5.29 of asu oarls a)

The integral in Eq. (5.29) is defined as a quadratic-mean limit of a sequence of random partial sums,
N

71(t) - .i.m. - cos (oi21+1t + +1(X21+1)] J-S(w21 +1 ~'')21+2 -'W21)
*2N"" I-I

"2N+2-02N-°

(5.29b)
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where +(cu^) is a sequence of independent random variables that are uniformly distributed over
(0, 27r). This integral was formally introduced by Levy [88] and was used in sea-surface modeling by
Pierson 189] (and noise-current modeling by Rice [90]). It allows the intuitive interpretation that 77(t)
is made up of an infinite number of randomly phased sinusoids with amplitudes that are determined by
the sea spectrum. Most importantly, Eq. (5.28a) is useful for simulating samples of the process 71(t) by
making the appioximation

)(t) - 17a(t) = T' Cos [Wit + o(wd,1 2 VS(w,)7 j,. (5.30)
,.. I

Also, samples of the solution of

d'x dx
d2+ 2h -d + vx = B(t) (5.31)dt2 dt

can be simulated by

N
x (t) = Xi kt) '(5.32)

where v(t) is the solution of Eq. (5.31) for

77(t) 71a(t) = Cos [ajt + 01(cu)] 25wj,)Aw,. (5.33)

This is the equation that we use in Section 6 to simulate the various ship-motion processes.

Although Eq. (5.29a) describes the vertical motion (force magnitude) of the sea at some location
on the surface, it contains no information describing the "direction of propagation" (force direction) of
the sinusoidal components. Though we do not require a two-dimensional representation in later
chapters, for completeness we present a brief description of the one commonly used. This model also
follows the nonstandard formulation.

The directional effects are accounted for by a simple heuristic modification of the sea-surface
spectrum. (Note that because of the nonstandard formulation, the directional sea-spectrum is not a
spectral density in the sense of two-dimensional random fields [911 and that it must also be used with
caution.) The directional sea-surface spectrum S(cw, 0) where 0 represents an angle measured relative
to a fixed direction, has been described [92], based on empirical measurements, by

Cr a, -2621-24-2

1 (1 + (0.50 + 0.82 e I/2g- 4
,
4

,
4
) cos 20

S(co, ) = f(5.34)
+(O.32 e- /2g-4.4u)cs40), 40.!°r 7<r

-- , 0o w

10 ~~~~~~~~~otherwise.
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(The gravitational constant is g, and the mean wind speed is u.) Another model, used by Pierson, Neu-
mann, and James [931, is

Co)-6e 2g1u 2 coS2 6 2 2
S(w, ) _ 0 , otherwise (5.35)

where g 980 cm/s 2 , and C - 1.53 x 104 cm2 s 5 . Not only is Eq. (5.35) simpler than Eq. (5.34),
but it has been found to be a very good approximation for actual seas [92,94] where high-frequency
components (frequencies greater than about 1 Hz) are not significant. The "spectral representation" of
the sea surface at some point (x, y) as a function of S(w, 0) is [89]

,, (X, y, t) J0J J cos 1g cos 0 + y sin 0) - wt + 1(&, 1 r2S (w, 0)ddwdO. (5.36)Joo Lr/2 c-( )
The usefulness of Eq. (5.36) is that it represents 17(t) as a summation of sinusoids of frequency W and
direction 0, traveling in the mean wind-direction (e - 0), distributed in energy and direction as
described by Eq. (5.35). Figure 5.3 is a qualitative illustration of this interpretation.

MEAN WINOLMEAN WIND

" ~~~~~~~~~~~ ~ ~~EAN WIND ITPN |

~~~~~~~~~~~~~~~~~~~~~~~PAN

SHOWIN'C

I' ~~~~~~~~~~~~~~~~~CONTOURS

S~~~~~~~~~~~~~~~~~Sw

Fig. 5.3 -Qualitative description of the two-dimensional wave
spectrum (from Ref. 94)

5.3.3 Response Amplitude Operators

- ~ As we saw in the previous subsection, the sea surface can be modeled as a Gaussian process so
that different seas are described by specifying their associated 'spectra." Building on this fundamental

- role for the spectrum, St. Denis and Pierson [80] developed a frequency response model of ship
motions. The system response functions describing the interactions between the ship and sea are called
response amplitude operators (RAOs). The RAOs are the freq:. icy response of the various degrees of
freedom of the ship to the wave motion. Given the wave-heighi directional spectrum, S(w, 0), and the
ith degree-of-freedom (dof) RAO, R1(w, 0), the associated response spectrum is

Ir/2 17~,/2IR&,(37
S5(w) f- S ), fdr/2 R ) OC2 (w@,0)do, i ,., 6. .37)
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In terms of system theory, one can think of R1(w, 0) as the frequency response of a system whose
input is the stochastic wave motion along direction 0 and whose output is the ith dof ship motion. The
total motion due to the sea is then computed by incoherent, linear superposition (Eq. (5.37)) of the
contributions from each wave direction. Figure 5.4 illustrates this concept assuming a finite number N
of wave directions.

JR, )to, 8)12 S (W. 0i2 5, /)/

SI.02) -Rk.0)-

S -N) ---- , - ) i,-.,* )1 {S 

Fig. 5.4 - A linear system interpretation of a ship's response to a
directional sea, Eq. (5.38)

When a ship moves in a directional sea, the response of the ship to the a is a function of both
ship speed and heading relative to the sea-wave direction. The RAOs are derived with reference Io a

* system of coordinates fixed in space and oriented so that the x-axis is positive in the direction of (he
ship's heading. To account for the speed and direction effects, a transformation from the fixed coordi-
nate system to the ship's coordinate system is introduced. This is simply a frequency transformation
that maps w into the "frequency of encounter" wg by [801

Oe = co-- V cos) (5.38)

where V is the ship's speed (V > 0), X is the ship's heading (relative to the sea), and g is the gravita-
tional constant. Equation (5.37) now becomes

-, (co f* Sc,(, 0)dOfE iR.(w 0)12S(CU, 0)dO, = 1, ... , 6. (5.39)

6. UNIT-SCATTERER-MOTION SIMULATION

Our goal in this chapter is to develop a simulation of the 6 dof motions for the US geometric-
centers which are caused by sea surface motion and ship maneuvering. It is well known that sea-
induced motions can be accurately described as zero-mean Gaussian processes. The DTNSRDC has
used the St. Denis-Pierson model of ship motion (described in Section 5) to generate, via simulations,
libraries of ship-motion "spectra," which complete the specification of the processes. These "spectra"
have been generated for various ships assuming various sea conditions and ship speeds. The method of
RAOs described in Sec. 5.3.3 is used to generate the ship-motion "spectra" and time-domain realizations
for the 6 dof motions of various locations on each ship. Some results of this work are presented in

-. Refs. 78 and 79. Because we are interested in studying the ship motions per se and rtot in studyin- the
physical processes by which these motions are generated, we base our motion model on the DTNSRDC
"spectra."

6.1 Motion Model

- Because we are assuming rigid body motion and that the sea-induced motions are small and
uncoupled (assumptions consistent with the St. Denis-Pierson model), we only require knowledge of
the cg motions and of the scatterer locations relative to the ship's cg. Given these, we use Eq. (5.17)
to yield the position of the ith scatterer (relative to an Earth-coordinate system) as a function of time.
We modify those equations here to be

-R(t) = Rj(0) + Tj[ig (t) - 3g (O) (6.1)
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and

I 0 0 0 z1 -yj
To0 1 o -z, 0 xi (6.2)

0 1 I yJ -xi 0

where ,, (t) is the position vector (reduced state vector) of the ship's cg, and Rj(t) is the position vec-
, * tor of the ith scatterer, both in Earth coordinates.

Equation (6.1) was derived assuming small uncoupled motions. For our studies we are interested
in scattering from various aspect angles. These aspect angles result from apparent translations and/or
rotations of the ship relative to the radar. For example, the ship may be located at some position Ro
and aspect angle ti0 relative to the radar boresight axis (Fig. 6.1). These large aspect variations are due
to our choice of radar-ship orientation and to ship maneuvering. Our approach to accounting for these

-: effects is to specify the sea-induced motions in a local coordinate system and then transform that solu-
tion to an Earth-coordinate system located at the radar. This allows us to retain the linear uncoupled

, . solution Eq. (6.1), rather than the general nonlinear solution (from Eq. (5.16)),

' ;. U

R,~~(0) + Rf(O +lW d-r, (6.3)

Fig. 6.1 - Aspect angle due to radar-ship positioning

* . /~~~~~~~~~~~~~~~~~~~~~~R

*, RADAR

We start building the simulation by assuming knowledge of the sea-induced ship-cg motion,
..W(t). This motion is given in local (ship) Earth-axis coordinates. This local system is defined by the

ship-axis and the Earth-axis systems being coincident for g (t) = 0. We then locate the ship-axis sys-
tem in space according to ship maneuvering and positioning by the translation

* kŽ(t)"3 Ž(0f) +f V?(T)dr (6.4a)

and the rotation

cosidossO cos a sin 0 sin 4-sin qpcos 4 cos t sin 0 cos + sin t sin q

- * T 5(t) W sin ip cos 0 sin i sin 0 sin X + cos ip cos 4 sin t sin 1 cos cos i sin 0 (6.4b)
*-sin 0 cos 0 sin X cos 0 cos 4

where V,(t) is the linear velocity of the ship's cg in Earth-coordinates, and 41, 0, and tp here denote
ship-axis system orientation relative to the radar-site Earth-axis system, not components of a motion
vector. The position of the ith scatterer now becomes

39



D.Y. NORTHAM

K E(t) = T (t)(RiL(0) + Ti[3FL(t)- t(0)H + k(:) (6.5a)

= T1 (t)Rf(t) + f(t)0 (6.5b)

where the superscript L denotes local Earth-coordinates and the superscript E denotes radar-site Earth-
coordinates. We note that the sea-induced motion Yg(t) is, in general, a function of ship maneuver-
ing. Ship rotations due to maneuvering (included in TW(t)) are not accounted for in the DTNSRDC
data, and it is well known that in hard turns, ships' responses to the sea are not the same as in
straight-line motion. Therefore we restrict our studies to maneuvers characterized by straight-line
motions with constant forward speeds and/or turning maneuvers in which we assume that the turns are
small enough that their resulting motions are independent of the sea-induced motions. This allows us
to use the solutions xF (t) that are tabulated by DTNSRDC as a function of ship speed. Once we
choose a ship speed (i.e., V1(t)) we then obtain the appropriate xg(t) processes.

Summarizing to this point: we begin our scatterer-motion model by assuming that the sea-
induced and maneuvering motions are independent except that Vs(t) determines the choice of
cataloged motions g(t). We then solve Eq. (6.1) for sea-induced scatterer motions and then Eq.
(6.5a) for maneuvering effects. Note that the sea-induced motions can be viewcd as Gaussian pertur-
bations of the maneuvering motion.

6.2 Mvodel of the Spectrum

Equations (6.5) are our fundamental equations for calculating phase due to scatterer motion.
They require three parameters for solution: ship position and orientation due to maneuvering, scatterer
locations relative to the ship's cg, and ship's cg motion. Maneuvering is application-dependent and the
scatterer locations are determined by target structure. The third parameter, rg(t), is always a zero-
mean Gaussian process with spectra that are functions of ship type, ship speed, and sea conditions.
This section discusses the simulation of x, (t).

We simulate 70(t) by using the method discussed in Sec. 5.3. There it is shown that we can
approximate a Gaussian process with arbitrary energy "spectrum" S(W) by Eq. (5.30),

U~~~~~~~~~~~~~~,i'~ ~~~~~~~~~~ -n(1) Nf X, o/2(w ,) Auw cos (6 it + 4(h wj)) (6.6)

wh.ere the h(w,) are independent random variables uniformly distributed on (0, 27r). The processes are
L- * * completely determined by specifying the "spectrum" S(W) for each component process. The "spectrum'

can be defined by an analytical expression or by tabulated data.

Clearly, the motion spectra are our fundamental model inputs. DTNSRDC has calculated and
tabulated, on microfiche, "spectra" for various ships and operating conditions. An example of this data
is shown in Table 6.1. Reference 78 describes the DTNSRDC method and illustrates it with specific
examples: cg motion for the DD963 moving at 10 knots in two sea conditions. Because detailed data
for these examples are presented in Ref. 78, we use one of them to obtain the motion processes for the
studies of this report. In particular, we use the processes resulting from the DD963 moving at 10 knots
in a fully developed. shortcrested (irregular) Bretschneider-spectrum (Table 6.2) sea and moving at a
300-heading relative to the dominant sea-wave direction. The associated motion "spectra" are shown in
the third column of Fig. 6.2. Figure 6.3 illustrates the cosine-squared spectral weighting used to pro-

* ' duce the shortcrested wave spectrum. Clearly, the spectral shapes vary considerably as a function of
ship type. speed, heading, and sea conditions. Although the simulation can use the DTNSRDC data
directly in specifying S(w) in Eq. (6.6), we prefer to use an analytical expression. This allows analytical
formulations in analyses involving the motion processes and more flexibility in the simulation. How-
ever, in doing so. we must approximate the spectral forms. This is not a significant problem because
we are concerned with very short time periods (on the order of I s) for the scattered signal to evolve

- - relative to the time required for the motion processes to evolve significantly (on the order of tens of
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Table 6.1 - An example of the Tabulated DTNSRDC Motion-Spectra (from Ref. 78)

DD 963

SHORTCRESTED
RMS VER DIS1 IN FEET/ENCOUNTERED MODAL PERIOD. TOE. IN SECONDS

CENTER OF GRAvrrY - 25t.7 FT FORWARD OF A? AND 21.9 FT FROM DL
SHIP HEADING ANGLE IN DEGREES

VT
0 0 is 30 45 60 75 s0 105 120 115 iSO 163 ISO

5 7 .034/ 9.3 .04U/ 8.3 .074/ 7.9 .101/ 7.5 .124/ 7.0 .141/ 7.0 .149/ 7.0 .148/ 7.0 .138/ 6.3 .120/ 6.7 .09/ 6.7 .073/ 6.7 .064/ 6.3
9 .071/12.6 .08I/12.1 .105/11.6 .132/10.1 .155/ 9.3 .172/ 9.3 .181/ 9.2 .179/ 9.0 .169/ 9.0 .151/ 9.0 .121/ 9.0 .107/ 9.0 .09U/ 9.2

11 .1 14,14.0 .121/14.0 .131/13.4 .160/13.1 .IC012.6 .195/12.1 .202/11.6 .2CC1V1.2 .190/11.2 .176/11.2 .15/11.2 .139/11.2 .113/11.2
1, .130A1I.7 .135/15.3 .167/15.3 .194/14.6 .200/14.3 .211/13.7 .217/13.6 .215/13.1 .207/12.8 .194/12.6 .18102.6 .16t/12.6 .163/12,6
1S .177/17.5 .181/17.0 .190/17.0 .202V16.5 .214/61.1 .223.15.7 .228/15.3 .226/15.0 .220/14.6 .210/14.3 .I99/14.3 .190/14.3 .187/14.3
1 7 .195/19.0 .19U/19.0 .205/13.0 .214/18,5 .224/15.0 .231/17.5 .236/17.0 .233/17.0 .224/16.5 .201J16.5 .220/16.5 .206/16.5 .203/165
19 .20t4"9,6 .210/19.6 .216/19.6 .223/19.6 .230/19.6 .236/19.0 .238/19.0 .231/11.5 .234/18.0 .221/18.0 .222V1I.0 .217/17.3 .215/157.
21 .219/22.4 .221/22.4 .223/22.4 .230/21,7 .236/21.7 .240/20.9 .242/20.9 .242/20.3 .239/20.3 .234/12.6 .230/19.6 .216/19.6 .225/19.6

10 7 .032/13.4 .046/10.1 .073/ 7.9 .101/ 7.5 .126/ 7.0 .143/ 7.0 .153/ 7.0 .13/ 6.1 .144/ 6.3 .127/ 6.1 .104/ 7.0 .041/ 7.1 .071/ 7.3
9 .069/15.0 .079/13.0 .103/12.1 .131/10.3 .157/ 9.1 .176/ 9.2 .137/ 9.0 .118 9.0 .180/ 1.7 .164/ 8.5 .143/ a.5 .124/ 8.3 .116/ 8.5

It .111/16.1 .118/16.1 .136/15.7 .159/15.3 .I 8/13.4 .197/12.1 .207/11.6 .20U/11.2 .201/11.2 .187I10.1 .171/10.8 .137/10.4 .151/101
13 .146/17.5 .151/17.3 .164/17.0 .182116.5 .199/13.7 .212114.6 .220/13.7 .221/13.4 .215/12.1 .204/12.6 A.92/12.6 .181/12.6 .177/12,6
1 3 .173/19.0 .177/19.0 .187/11.3 .200/1 *.0 .213/17.5 .223/1M6. .229/15.7 .230115.0 .226/14.4 .217/14.6 .20U/14.3 .200/14.3 .197/14.5
17 .192/20.9 .194/20.3 .20220.3 .212V19.6 .222V19.0 .230/18.0 .235/17.5 .235/17.0 .232116.5 .226/ 1.5 .219/16.5 .213/ 1.6 .211/16.5
1 9 .205/21.7 .207/21.7 .213/21.7 .221/21.7 .229/20.9 .235.20.3 .239/19.6 .239/19.0 .237/11.5 .23218.0 .227/18.0 .222/1V.0 .221/17.5
21 216/24.2 .211/24.2 .222/24.2 .221/23.3 .234/22.4 .239/21.7 .242120.9 .243/20.3 .241/20.3 .237/19.6 .233/19.6 .230/19.6 .229/19.6

13 7 .031/14.6 .043/ 1.7 .072V 1.3 .101/ 7.0 .126/ 7.0 .145/ 7.0 .1SS 7.0 .AW6 7.0 .147/ 7.0 .131/ 7.1 .108/ 7.3 .0W 7.3 .073/ 7.3
9 .067/19.6 .077/19.6 .101/12.3 .131/12.1 .159/ 9.2 .ItCV 9.0 .196/ 1.7 .19U 8.3 .193/ 8.3 .179/ 8.3 .161/ 3.3 .144/ 3*3 .137/ 1.3

,, .108/20.3 .115/20.3 .133/20.3 .157/20.3 .181/12.8 .200/12.6 .213/11.6 .21/11.2 .214/10.1 .205/10.5 .192/10.1 .180/10.1 .175/10.1
13 .143/20.3 .AWN20. .161/20.3 .180/20.3 .19UI5S.7 .214/15.3 .224/14.0 .228/13.4 .226/12.8 .219/12.6 .209/12.6 .201/12.6 .197/12.6
1, .170/21.7 .173/21.7 .113/21.2 .197/20.9 .212120.3 .224/17.5 .233/15.7 .236/13.3 .236/15.0 .223/14.6 .221/14.3 .215/14.3 .213/14.3
17 .11/22.4 .191/22.4 .191/22.4 .209/22.4 .221/20.9 .230/20.3 .237/14.0 .240/17.3 .23U/17.0 .234/16.3 .229/16.5 .224/16.5 .222V16.5
19 .202124.2 '.200/24.2 .210/24.2 .211123.3 .227/22.4 .235/20.9 .240/20.3 .242V19.6 .241/19.0 .231/18.0 .234/11.0 .231/17.5 .229/17.5
21 .213i26.2 .215/262 .219i25.1 .226125.1 .233/24.2 .239/23.3 .243/20.9 .245/20.- .244/20.3 .24V219.6 .239/19.6 .236119.6 .235/19.6

20 7 .030113.7 .044/13.7 .071/13.7 .100/ 7.0 .126/ 7.0 .145/ 7.0 .155/ 7.0 .156/ 7.0 .14U/ 7.1 .132V 7.1 .109/ 7.7 .087/ 7.7
9 .034/19.0 ,075/19.0 .IO0/19.O .130/19o .160/ 9.5 .14/ 9.0 .200) 3.5 .206/ 1.3 .204/ 8.3 .192V 8.5 .177/ 1.3 .162/ 5.3

I, .104 .23.3 .111/23.3 .131/23.3 .1;v233 A .21.9 .204/11.6 .220/11.2 .229/10C. .229/10.1 .223/ 9.3 .213/ 9.3 .204/ 9.2
1 3 .13U/26.2 .144/26.2 .135/26 2 .135U26.2 .17t/23.3 .1.9U13 .217/15.0 .230/14.0 .23U/13.7 .239/12.6 .235/12.4 .229/12.1
13 .166/26.2 .169/26.2 .ISW/26.2 .195/26.2 .211/23.3 .226/19.0 .237/13.7 .243/13.3 .244/15.0 .242114.6 .237/16.3 .233/14.3
17 .144/27.3 187/27.3 .195/27.3 .207/26.2 .220126.2 .231/19.6 .240/19.0 .245/17.5 .246/17.0 .244/16.5 .241/16.5 .238/16.5
19 .199/27.3 .201/27.3 .207/27.3 .216127.3 .226/26 2 .235/23.3 .242120.3 .246/19.6 .247/19.6 .246118.0 .244/18.0 .242/17.5
21 .211/21 6 .212/27.3 .217/27.i .224/27.3 .23V27.3 .239/26.2 .245/23.3 .24U120.9 .249/20.3 .241/19.6 .247/19.4 .245/19.6

25 7 .00/16.3 .044116.5 .071/16 5 .100/16.3
9 .062/16.3 .073/16 5 .099/16 .130/16.5

11 .101/33.1 .109/33.1 .129/16.S .155/16.5
13 .13./33.1 .141/33.1 A1633.1 .176/24.2
15 .163133.1 .167/33.1 .171U331 .194/33.1
17 .182133.1 .185/33.1 .194/33.1 .206133.1
19 !97/33.1 .199/33.1 .20633.1 .215,33 1
21 .209/33.1 .211/33 1 .216/33.1 .223/33.1

.125/16.5 144/ 7.0 .154/ 7.0 .155/ 7.1 .146/ 7.3 130/ 7.5 .107/ 7.7 .084/ 79 .073/ 3 I

.161/16.5 16/16.5 .204/16.3 .212 8.5 .211/ 3,5 201/ 3.7 It6/ 8.7 .172/ 3.7 166/ 8.7

.183/16.5 .20U/16.5 .226/11.2 .23U/10.5 .241/ 9. 23/ 9.2 .231/ 9.2 .224/ 9.2 221/ 9 2
.199/.24.2 .219/16.5 .236/13.4 .247/13.1 .252112.6 .252/121 .24t/11.2 .245/11.2 243/11 2
.211/24.2 .22U/16.5 .241/16.5 .23V16.3 .255/14.6 .236/14.3 .256/14 3 252,14.3 .251/14 3
.219/24.2 .233/24.2 .243/11.0 251/17.5 .255/170 .25/6.3 .255/16.5 253/165 253/165
.226133.1 .236/24.2 .245/20.3 .251/196 .256196 .255/18.0 .255/180 .2$4/17.5 253/173
.232/33.1 .240/24.2 .247/24.2 .252/20.9 .255/'03 .256/196 .255/19.6 255/196 254/196

NOTE: V h ship speed in knots and TO is modal wave period in seconds
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Table 6.2 - Bretschneider Spectrum and Asso(

Single Amplitude Statistics a-

Root mean square amplitude, rms 1.00 SC

Average amplitude 1.25

Average of highest 1/3 amplitudes, signif icant 2.00 A

* - ~~~Highest expected amplitude in 10 successive

amplitudes 2.15 .

Average of highest 1/10 amplitudes 2.55 2

Highest expected amplitude in 30 successive
amplitudes 2.61

* - ~~~Highest expected amplitude in 50 successive
amplitudes 2.80

Highest expected amplitude in 100 successive
amplitudes 3.03

Highest expected amplitude in 200 successive -
* amplitudes 3.25

Highest expected amplitude in 1000 successive

Iamplitudes ____ _____3.72

N * - ~~Number of successive amplitudes

COINSTANT - 2(ii(nN)l!Ž.2where CONSTANT re~ates crtothe'highest
successive amplitudes.

The highest expected amplitude in N amplitudes is the most prbobble extr
exceeded 63% of the time.

To obtain wave height or double amplitude statistics from rms values, multiply

42

U. 

ciated Statistics (from Ref. 78)

expected amplitude in N

eme value in N amplitudes. This value may be

single amplitude constants by 2.0.

*1.

Bretschneider Spectrum S,(w)
(Cw) - Awx5 exp [-_/,W4 ] in ft2 /s

4 483.5 (Z W) 31T04, ft 2 s- 4

B By 1944.5/ T0
4 , S-4

)1/3 - Average of highest 1/3 wave
heights

To |- Modal period of spectrum, i.e.,
period corresponding to peak
of spectrum

, .
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DD 93 SHORTCRESTED RESPONSE SPECTRA
SPEED - 10.0000 SIGWH- 10.0000 TMODL - 11.0000
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Fig 6.2 - Tabulated spectra for the DD963 (from Ref. 73)

43

I.. -

*

I

'�: r

A

,�- a-.

� I I
II

01



D.Y. NORTHAM

-' * 180**0.1061

* ~~~~~~~~~~~~~~~~~~~~~~1656 e 195,

1500 (0.204) (0.0)

PREDOMINANT f10394/
HEADING

, 10391 i, < / V 270
10.354)

r. ~~~~~~~~ ~~~~ ~ ~ ~~~~(0.289) X , 

30r'~~~0
;, ~~~~~~~~~~~~~~~~~~~~~(0,106) 5

tO.0)

, ~~~~~~~~~~~~~~~~~~~~~~~~~O,

NOTE: NUMBERS IN PARENTHESES ARE
SHORTCRESTING WEIGHTS.

Fig. 6.3 - Shortcresting scheme for the example wave spectrum (from Ref. 78)

seconds). In other words, a ship does not move very far in 1 s. Therefore, in generating the scattering
processes we generate very short 'pieces" (realizations) of the motion processes. We quantify this
observation in later paragraphs.

6.3 Spectrum Algorithm in the Simulation

Visual examination of the spectra yields the following observations: they typically are unimodal,
L - are band-pass. are asymetrical about the mode with more energy in the higher frequencies, and have
L negligible energy in very low frequencies. These characteristics and the desire for simplicity led us to

? propose using a spectrum of the form (following the notation of Eqs. (5.28a) and (5.28b))

F,,a + au*(6.7)
a 2 + (w - ) 2 a 2 + (W + W0)2

to approximate the motion spectra. For the appropriate choice of wo and a, the spectral approximation
is, for co > 0, characterized as being unimodal, band-pass, symmetric about the mode, of simple ana-
lytic form, and F(O) << F(WO) (Fig. 6.4). In the simulation we alter the upper and lower spectral tails
to introduce assymetry. (The author's experience has been that Eq. (6.7) often well characterizes the
spectrum of measured data and may be better approximation to the spectra of phys9ical processes than
the commonly used low-pass form

F(w) 2 2 (6.8)
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.

a)

especially when w0o
(6.8) when w0 -
(Se (w) - 2F( ), w >

0.10 0.15

FREOUENCY (Hz)

Fig. 6.4 - Approximation spectrum for X 0 0 and S. (0) << S. (io)

a so that F(w) has the form shown in Fig. 6.5; note that Eq.
0.) The autocovariance function of the associated

0) is

Ra (T)-of 2F.(W) cos (wr)dw

21reCallI cos W0 7.

4.00

3.00

.
uC

2.001

1.00

0.00 0.06 0.10 0.15 0.20

FREOVF.NCY {Hz)

Fig. 6.5 - Approximation spectrum for 4 > 0 and a - wo

In fitting Eq. (6.7) to the forms of Fig. 6.2, we specify five parameters: w0, a, a2 (the process
variance), fl, and f4 (lower and upper cutoff frequencies). Clearly, w0 corresponds to the center fre-
quency of the process. We choose a based on the concept of bandwidth. If Sa(O) << Sa((0), we
define the half-power bandwidth BW as the distance (in radians) between the frequencies where

1Sa(w) - - S. (wo). Since
2

we solve

2a a 2 + (wcw _ o) 2

45
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energy spectrum
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yielding

-1/ 1oo - ± a
or

@1W2Q - a. (6.10)

The process half-power bandwidth is defined by

BW - Coj/2 - /2

so that
BW (6.11)a2

We modify Eq. (6.7) for the simulation to introduce an asymmetry effect by specifying asymmetric
upper and lower cutoff frequencies. For simplicity, we choose the lower frequency to be f, 
co0 - BW and the upper frequency to be fU co0 + 2BW. The resulting spectral shape is illustrated in
Fig. 6.6. Finally, we must specify the variance of the process. Reference 71 gives the spectral forms
and the associated rms values (standard deviations) fcr the component processes. To generate a reali-
zation with the same rms value, we first generate a realization with a variance of one and then multiply
by Cie desired rms value. The variance a-2 of the truncated spectrum process is

2 r W,0 +28W f 2 cr 2

J w 0 -BW |a 2 + (Co - co)2 a2 + (co + too) 2 dc

= 2 tan-l 2BW + tanI BW + tan-I 2wo + 2BW1 _ tan- 1 2=,o-BWI
af a a Ja j

- 2{tan-l 4 + tan- 2 + tan-' 4 'W + 4 -tan-I 
14 o- 211. (6.12)

For our example (Appendix A), wo/BW varies from about 2.5 to about 3.5. For simplicity, and with
minimal loss of accuracy, we set odJBW - 3 so that a-2 4.940. Therefore we normalize the simu-
lated process by

I I 1/2

-4.940

= 0.45 rms (k7(t)) (6.13)

where rms (-q(t)) is the desired rms value for the simulated t7(t) process.

(n

25

20

15

10 

5 5 -

0 1 I
000 0.02 0.04 0.06 0.0a 0.10

FREQUENCY IHzI

Fig. 6.6 - Truncated spectral form used in the simulation
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7. RADAR CROSS SECTION

In this section we develop equations for the RCS of an N-source target in terms of unit-scatterers.
Multipath effects are accounted for by using the model described in Section 4. The transmit and
receive polarizations are assumed to be the same; no cross-polarization effects are considered. We will

: it focus our attention on the correlation properties of RCS over short time-intervals.

7.1 Fundamental Representation

In Section 3 we showed that the RCS of a target comprised of N USs is
IN ~~~~~~2

X,(t) j{P?2~r 1X(R, s ) R (7.1)

where, for the ith US, PT. is the transmitter polarization vector, PR is the receiver polarization vector, 0,
defines the US orientation (as a function of time), and RI defines the US-to-radar range (as a function
of time). For simplicity we assume that PT - PR _ (1, 0 )T so that (from Eq. (3.8a))

a,(t)_ - |Ail )eJtti(IeI) (7.2)

For practical reasons, measurements of ship RCS at low-grazing angles must include the effects of
sea-surface multipath. Therefore we include a model of multipath effects in our representation of RCS
by modifying Eq. (7.2) by the com,@'-x multipath factor F(R, ii) (described in Sec. 4.4) yielding

; a- ~~~~~~~ HE ~~~F2 (AI, 9j )A I I(R. W) el~i (7.3)

As discussed in Section 4, F2 (R, d) was obtained assuming that the US reradiates equally toward the
- _ radar and toward the sea-surface specular point (Fig. 4.2). This is a good approximation for small

radar-grazing-angles and when the US amplitudes are not strongly dependent on elevation. Oiherwise,
the elevation radiation pattern must be viewed as an antenna pattern. This pattern is then accounted
for by using the same method as was used to account for the radar's pattern in Sec. 4.4.

7.2 Useful Equations

Equation (7.3) is the fundamental equation that we use to model RCS. In this section we derive
from Eq. (7.3) several other equations for RCS. These equations will prove useful for analysis and
simulation. Suppressing the RI and O terms of Eq. (7.3),

a(t) W F,2A ]] e (7.4)

and associating JFj 2 with All,,

a-) - IF,1A11A, eJt+ )2

IN2
,-.| A, e | . (7.5)

. ,47*.e
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Expanding Eq. (7.5),

a-t) - A, cos + A, sin

N N N N
= ByA, cos g , Aj cos t'j + A A,sin 'P Ajsin P1j

j l ~~J-l l-1 J-1

N N
- 2 z AAjlcos 'Pi cos Pj + sin 'Pi sin YjI (7.6)

and hence
N N

a-(r) - F AAj cos (P,- I) (7.7a)
, J-l

and
N N N

a-(t) = 2 S X, AjAj cos (0, - P) + z A,2. (7.7b)
l- J-tl _ 

For the ith US, let 3,B(.) account for the orientation effects on phase and y,(-) the multipaih
effects so that

,(R,, -di)= - X 1 2 IRI + H,3O) + yI(Ki, V) (7.8)

and

i Ar (I _ IR- ) #j j)+yi(RI, YJ(kJ, (7.9)

Equations (7.7a) and (7.9) are our fundamental equations for simulating RCS. In the simulation, the
Aj(-) and PO( ) functions are user controlled, the RI terms are generated by the ship motion (Section 5),
and the y,( ) terms are generated by using the model in Section 4.

As suggested by Eqs. (7.5) and (7.2), we define a complex scattering function s(t) to simplify
notation:

s(t) - BRA, eb. (7.10)

Note that a (t)= s ) s .

7.3 Statistics for an N-Source Target

In this section we investigate the first and second moments of the RCS process. We show that
over short time-intervals the RCS process can be nonstationary and analytically complex even when
simplifying assumptions are made regarding the scatterers. We also investigate in what sense the well-
known random-phase model (resulting in Rayleigh-amplitude statistics) is a limiting case of the general
formulation. We use the notation of a-(t) for RCS and a-1(t) for standard deviation of the ith phase
process; no confusion will result given both the context and the subscripting (standard deviations only).

7.3.1 Mean and Correlation Functions

Because the amplitude functions are much less sensitive to target motion than the phase functions
are, over short time intervals they can be well approximated by deterministic functions (typically as

48
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constants, except for specular scattere
- effects, the phase functions are rapid]

view the phase terms as stochastic proc

Given an N-source target with de
get RCS is

.W -; ~ ~ ~

i and the associated mean and autocorrel

E(a-(t))

and
-' N N N N

Eoa-(t 1) a-(2))= £ £ i A,(tI)Ak
* | .i-I k-I /-I m-I

The expectations in Eqs. (7.12)
useful when the joint densities of the
in the form

(ik (co,i

-.D iklm (W i iti (Oki tk,

we have

EfeJ

(where we use the notation (0, - Ok)(t

'o. -0k)(11) + (e,

Using this formulation in Eqs. (7.12) ar
N

Efcr(t)} = A/2(t) +

- E A,2(j) +

. ~~~~Ejor-r)(rWt)) SA 2(t,)A 0(2) + 

' N N N N

+ £ S E S A, (tl)Ak (t,)A,(t 2
i-I k-=l /-1 m-
except i-k-/-m

and i-k• f-m

and

.' ,.- ~ ~ ~~~~~~N N N

E(r 2(t)} = S Ai 4 (t) + F A1
2 (t)A1

2

-,> ~~~ ~~i-I i-I I-I

VN N N N
+ A,(tAk(t)A,(t)A

i-I k-I I-I m-I
_except i=k=I-rm

and i-k ft-m

'_
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ers). However, even ignoring the US orientation and multipath
ly varying, nonlinear functions of target motion. Therefore we
:esses.

eterministic amplitudes A,(t) and stochastic phases (t), the tar-

- A, (d.k (t) eJ[#') -
/-1 k-I

ation functions are

£ 7 Al(t)Ak(6)Eie t9 J' t -

1-1 k-I

(7.11)

(7.12)

(t,)A (t 2)Am (t2)E(eJ[(8I k)('I)+ /-OM)(f2 )) (7.13)

and (7.13) suggest characteristic functions. Such functions are
phase processes are known. Writing the char'cteristic functions

t/, cok, t0) = EfeJWiG(I,) +J Ak`k( fQ))

O/, t1, win, tm) - E(eJwOI(hI) +... +i .mim0(Im)jI

(7.14a)

(7.14b)

(7.1Sa)

(7.15b)

(7.16a)

,J j9 k d ) = (Dik(I . t. -I, t)

) O (t) - Ok (t)) and

0. )= Oik/m(ls tls -1 tlq Is t2s -19 t2).

id (7.13) we obtain
, N

Ai )Ak (t)(Dik (1s, 1,t
i-I k-I

iidk

N N
2 z z Aj(t)Ak(t)'jk(l, t,-1, 0,

i-l k-i+l

NI 2r M 202

t)A,, 2)(Dikh, (1 t, 1, t,, 1, t2, 1, Os)

N ,V
(t) + y 2 (t)

i-l k-I
igk

(7.16b)

(7.17)
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In general the phase processes are complicated functions with probability laws that at best can only
be approximated. Over long periods of time (relative to target-motion time constants) they most likely
have probability density functions that are unimodal and symmetric when they are not viewed as

-t modulo 27r (i.e., distributed over (-oo, oo)). This suggests a Gaussian approximation. If the phases
can be represented by joint Gaussian processes, then the form of the associated characteristic functions
are known; they are f951

* s (fi) t dS t ) ej~~~~~~~~~~~l&0d71s(t;d+Wkr7k(td)1-2la 2(t,)&ui2+2rik(,is1k)Wi@k+a 2(tk,)kd21 71a(Dik(ci,' t1, cok, tk) e * (7.1 8a)

_ and

iOiklm (coi,, tik, co1, 1t, (Ormn tm) - e (7.18b)

where

', j(1j) =E(0,(t,)). (7.18c)

a 4ti)= Ef[o0(tj)- (4)]2), (7.18d)

rik(,, = EUG, (ti -Id(t)J]k(tk) - 71c(tk)]) (7.18e)

1n= (tl1,s cok, ot°, c)T, (7.18f)

and , is the covariance matrix for O0, Ok. 0,, and Om with

.,p(tp, tq) = E{[op(tp) - Tlp(tp) J![Oqq) - 71q(t)1) for p, q = i, k, 1, n. (7 .18g)
je We note that from Fq. (7.18a)

-'ik (1, t1, i) = eJi,(f) -7)k()17-1/2Uj(t)-2r-(t.2)+,k 2 (7.19a)

and from Eq. (7.18b),

'>iklmn(l, l, -1. ,l, 1, 12, -1, 2) = eJFr /2F2 (7.19b)
'vhere

F1 - -7(fi) - '7k(tk) + Y71(,) -Q S ('n) (7.19c)

- and

F2-S ii(t 1, t 1) - iik (t , tl1) 4 A il (I , t`2) - Aim (I 1 t2)

/l (tl, tl) +Akk (1, tI) - ILAI(II, t2) + Jkm(t, t2)

* +Afi(t2, tl) - k(tb2, tI) + k.,,(t2, Id) - /m(2, 12)

mi 0(2, I l) + Anmk(t2, tl) - ml (t2, 12) + A inin,(t2 i t2). (7.19d)

7.3.2 Randloin-Phase Model

NVe define a random phase model for RCS to be an N-source model in which the phases are
-- represented by independent, uniformly distributed (over (0, 27)) processes. Such models are widely

-: used in analyzing the RCS of complex targets. They are useful because they greatly simplify the RCS
* analysis. They are valid when the time period of interest (for analysis) is large relative to the correla-

,- _ tion tlimes of the phase processes.

._
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Because we are interested in RCS analysis and simulation over short time-intervals, it is important
to consider in what sense the general formulation can be replaced by a random-phase model. Therefore
in the following we examine the behavior of the first and second moments of RCS as the random-phase

*-. iassumptions are approached.

- in, We now consider the simplest random-phase model: assume that the scatterer amplitudes are
equal and constant and that the individual phases are white-noise processes. To obtain the first two
moments of this model we write

Kai~ N e N N
V~ a~ S(O-s Ae' MA costs+j + Al sin 0, (7.20)

where we recall that aor) s(t) s*(W. By the central limit theorem, the real and imaginary sums in
Eq. (7.20) approach being Gaussian distributed for large N. Further, they are uncorrelated because

.. i ~ ~ ~~N N N N
A, cos 01 £ Ak sin Ok - A2 £ £ E(cos 0, sin Ok)

-A 2 E Llcos 0, sin O,) - A , d 0. (7.21a)

Clearly, the mean of each sum is zero. Now consider the variances:

- E|f| A, coste o1J A2E{,2cos6 k.tokJ

ai~~~~iii~~~ A2 z E~cos2 o,}
* N _~~~~~~~~ 

jfCos 20, NAo

1N 2 r CoS2 or NA 2
,~~~~~~,,~~~~ Ao --I- did -2' (7.21 b)

and similarly,

[ E{(IvA sin ,JJAA2 EEsin2eI)= N2 (7.21c)

* .' Because of the white-noise assumption, RCS is also a white-noise process. Finally, the RCS process,

a' - Is(t) 12 A cos oJ + IA sin oiJ (7.22)

*- 'a approaches being exponentially distributed because the summations are independent Gaussian processes
(approximately) with zero means and equal variances [951. From Eqs. (7.21b) and (7.21c),

Efa-(t)) - NA2 (7.23a)

and because a-(t) is exponentially distributed,

E{-r 2 (t) -2N 2 A4 . (7.23b)

Next we consider Eqs. (7.16) in the context of the random-phase assumption. We assume that
the phases can be represented by Gaussian processes and, for simplicity, we assume that the means of
the individual phase processes are zero. Therefore Eqs. (7.16) become

,., EXaJ(t)1 = A,2(t) + 2 z £ A,(t)Ak(t)e /2(i)2rik(fsf)+c (f)l (7.24)
*-l k-5+1

.W; - ~~~~~~~~~~~~~~~~51
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and

E(cr(-1)-(02)) = - A,2(t1)Aj2(t2) + A,2( I1)A (t2)

tc i~ ~ ~ ~~~~~~~~~-I a-Ic' I-

+N N N N 72a
, . + S z z z ~~~~~~~~~Aj(tj)Ak(tj)Aj(t2)A,,(t2)e i1Eklm t1J2 (7.25a)

i-l k-I 1-1 n-I
except i-k-l-m

and i-k;dl-m

where

E-iklm (tlh t2) = a7(t 1) + a-t2(ti) + a- 2(t) + -,c(t2)
2 rik (tj, -I)cr('l)a-k(ti) 2rjm (t2, t2)crl(t2)crm(t2)

+ 2ri,(t1, t2 )Crl(00)a,(12 ) + 2rk (tj, t2)a-k(td)a-m(t2)

- 2rim(ti, t2)0i(tdG)am(t 2) - 2rkl(tl, t2)0-k(t1)a-,(t2). (7.25b)

Now assume that the O,s are not cross correlated. In the limit of large variances,

lim Eao(t) = A, 2(,) (7.26)
2-w

0j0 i-

and
N ~~~~~~N N

lim E(a-(td)a-(t 2 )) = z A,2(t,)A,2 (2) + I 2 A,2(t1)A 2)
* i2~00 i-I i-I 1-1

+ S A A,(tj)Ai(t 2)Aj(tt)Aj(t 2)eh/2 EhIli(tt2) (7.27a)

where the function in the exponent is

7-.- 7f (tbI t2) = [a-((td) + a-,2(t2) + a?(tG) + a 20(t2) -2R(t 1, t2) -2R,(:, t2)1 (7.27b)
'.' (Rjt, t2) is an autocovariance function). (The third sum-term in Eq. (7.27a) remains because even

for a-,2 large, as (02 - t) approaches zero Eq. (7.27b) approaches zero; in other words as t2 approaches
tj, even for a-7? large, [0i(t1) - On(2)1 and [Ok(t) - O(t2)1 approach zero when i = m and k = 1.)
For tI = t2 = t, Eq. (7.27a) becomes

X--' ~ ~ ~~~~~~~~~~~N N N
lim Ea- 2(0)) - S Ai4(t) + 2 £ 2 A 2 (t)A,?(t). (7.28)

a*2 ' o , 1-1 k-I

Equations (7.26) and (7.27) imply that even if the variances are time-varying, as they become large the
RCS process becomes wide-sense stationary, assuming the amplitudes are constant. Equation (7.27b)
shows that the RCS process can remain correlated even for large a-,(-) if the individual phase processes

* remain strongly correlated.

*xw, Next we assume that Ai (t) At) = A. Then Eq-. (7.26) and (7.28) become

lim E(o-(t))= NA2 (7.29a)
* ea2-

Vi

* ~~~and

lim E(U2(t)= [N2 + 2N(N 2N A (7.29b)

V i
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and Eq. (7.27a) becomes

lim Ea-(td)a-(t 2)) NA4 + N(N - 1) A4 + A' T e"2 (7.30)
ai 2-w~~~~~~~~~~~~~- -

Assuming equal and constant variance functions in Eq. (7.30), (Ra = RA, a- = aA, i = 1,., N),

lim E(a(td~a(td))-N2 A4 + A4 S e A S3RA(" 112))

-N24|+ N(N - ) e-2ja2-RA(tlzt2)1j( 1
U. NA I+ N2 e -R7.31½)l

We see from Eq. (7.31) that the RCS process remains correlated if the individual phase processes
remain correlated (not white noise).

For real targets the phase variances remain finite and the phase processes are not white-noise
processes. It is likely to be the case that for target motions that produce large phase variances (over
(-oc, Ao)), the phase process (due primarily to geometric-center motion) will be strongly correlated.

. r Clearly, for high sampling rates (short time between samples), the correlation of the phase processes
cannot be ignored.

7.3.3 Range- Variation Effects

Next we consider a specific model of the geometric-center motion to further illustrate the diffi-
culty of modeling phase variations over short time-intervals. Ignoring US orientation and multipath
effects we have

N N 47.
,: *~:-- a-(t) = ,Aj cos -R (I t(co, *) - 1- ,(, *)1). (7.32)

i-I ,- 
The range process, Rj(co, t), is (Eq. (6.5)),

kRE(W, t) = T,( )WR (co, 1) + kf(t). (7.33)

The stochastic component of Eq. (7.33) is k,%(w, t); it is a linear combination of Gaussian processes
and therefore is Gatissian. The ship maneuvering terms, TW(t) and k,%), are deterministic, and over
small time-intervals can be approximated by linear functions of time. If T3(t) and Rf(t) were con-

* stant, then ,E(co, t) would be a three-dimensional Gaussian process. If in addition, each component of
RE(co t) had a mean of zero and equal variances (which they do not), then IRf(w, *)I would be
Maxwell distributed [95].

Clearly, the IR(w, 6)1 process is ill general nonstationary and analytically complex. Even assum-
ing that the ship does not maneuver, all that can be said in general about I jE(%, t)I is that it is a non-
linear transformation of large-time-constant Gaussian processes (relative to a radar's PRI), is oscillatory
and positive, and probably has a density function that is symmetric about a mode. Relative to a radar's
PRI, Icng time periods may be required to produce realizations of' Ik(w, t)1 that exhibit stationary
statistics.

As a specific example, we investigate range-induced variations in the RCS phase for our example
ship. We assume a (moderately high) radar frequency of 10 GHz (A = 3 cm). Over short intervals
the [R,(w, *)1 processes vary slowly (a numerical estimate is made in Appendix B) and therefore we
will model them as linear functions of the form

I (0c, .)1= R/'(c) + Vj(w, tat. (7.34)
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Normalizing by 47r/X, we obtain the phase angle processp qi,(w, 1) = ip~(w) + cj(CO, 0: (7.35)

where tpP(w) is a uniformly distributed random variable (over (0, 270)). For nonrmaneuvering motions,
cj,(G, t) is a slowly varying process whose density function is determined by the ship's motion. Because
this motion is oscillatory, the density function of Vj(w, l) will likely be symmetric with mean equal to
zero. For short periods we approximate Vj (co, t) by a random variable and the RCS process becomes

a-(t) = ~ A, (1)AA (t e(W) - k A(W) + (C, c1) (7.36)
i-I k-I

The RCS which is generated by the target over the short periods are "pieces" of realizations of the
RCS process. Because the radar must process only these pieces, we examine the "apparent variance" of
them. For an interval of length T, the apparent mean of the phase process is

X~~~~~~~~~~~~~~~~7T = T1A2 (q, + cjt dt - ° (7.37a)

and the apparent variance is

=2 1 (C,1)2 dt = i
. T -T/2 12 (7.37b)

Equation (7.37b) confirms that which is intuitively obvious: either or both ci or T must be large for
the uniformly distributed-phase approximation to be valid. If the standard deviation of qi is required to
be greater than 2n7r for the approximation to hold, then over a time interval To we require that

c-"i° > (2nir)2 (7.38a)

or 12

Ci >, n.(7.38b)
*: ~~~~~~~~~~~~~~~~To

v.7 Since ci = 4ir Vj/A,

Vt > A n (7.39a)
: ~~~~~~~~~~~~~~~~~To
and

TO V.
n < --. (7.39b)

To illustrate the limitations of the uniformly distributed-phase model, consider a radar tracking
the stern of our example ship at a low-grazing angle. To estimate the value of Vk we use

E(A T2I"/2

Vi = E1AT2}112(7.40)
__: ~~~~~~~~~~~~~~~~~~~T
where r is the radar's PRI. In this scenario, pitching motion has the dominant effect on the variations
in the scatterer ranges: from Appendix B,

E(AR2 ) =ZaxE(A0 2

-- = a,2[1 - e e OT cos T]. (7.41)
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For T - 0.002 s, cuow - 0.409 rad/s and a-e O. 00
B), E(AR2 )"I2 - 0.00127 m and Vj - 0.64 m/s. I

a 5 then n must be no less than about 10. For a 3 cm
model to apply, V; must be greater than 0.51 m for
marginally true and that for lower frequency radars, it
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19 rad (Appendix A), and Zmax - 5 m (Appendix
f the pitch process, 0, is approximately Gaussian,
radar, Eq. (7.39a) says that for the random-phase
T - 1 s. We see that in our example this is only
will not be true.

The second (next to RCS) most common projection of the scattered field is glint (angle noise,
angle scintillation). This parameter represents the apparent angular location of the target as seen by the
radar. It is correlated with the target's RCS and is a function of the radar's frequency, polarization, and
antenna pattern and of the target's shape, size, and composition. We make the same assumptions for
glint that we made for RCS: the radar is horizontally polarized with fixed frequency and the target is a
perfect conductor whose polarization effects are accounted for in the unit-scatterer amplitudes.

As described in Section 1, two concepts have been used to understand and analyze the
phenomenon of glint: phase-front distortion and Poynting-vector direction. In the development of
glint models based on these concepts, it was assumed that the target was composed of a finite number
of point-source or dipole scatterers. Therefore, these models are directly applicable in our modeling
approach. In this chapter we use both concepts to develop glint equations for a target described in
terms of unit-scatterers.

Various authors have applied the glint concepts to specific problems, but to our knowledge no
deterministic analytic-formulation of two-dimensional glint has been made for the N-source target in
the presence of multipath. We develop this formulation for both concepts. The resulting equations will
be analytically complex but ideal for digital simulation.

8.1 Definitions

Most existing models of glint represent the target and its motion in only one plane: the target is
represented as a line in the azimuth plane of the radar. (This approximation is made because the long-
est dimension of most targets is in that plane.) Therefore, these glint models are one dimensionaX We
refer to such glint as azimuth glint. The less-often-used but more general glint models are two-
dimensional. Because of our three-dimensional representation of the ship and of multipath effects, we
will develop a two-dimensional glint mcdel. The second glint dimension is elevation.

8.1.1 Phase-Front Gradient

The phase-front definition was introduced by Howard [12]. He showed that azimuth glint was
equal to the azimuth slope of the phase front of the scattered field. Figure 8.1 illustrates this concept.
For the one-dimensional problem, the phase front is a curve that passes through the location point of
the radar. This curve is defined by mapping the locations of points where the phase of the scattered
electric field is equal to the value of phase at the radar point. The analytical expression for azimuth
glint is derived by expressing the phase of the scattered electric field, 0, as a function of the angle
about the sight-line from the radar to a fixed point on the target, 4, (see Fig. 8.1). Each scatterer is
assumed to yield identically polarized plane waves at the radar. The azimuth glint then becomes, in
linear units,

G, (1) - k did (8.1)
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G- ~~~~LINEAR
-s_ 14 ~GLINT *

TERECET // PPARENT TARGET
POIT /LOCATION

Fig. 8.1- Azimuth glint visualized in terms of phase front slope

PHASE FRONT
NORMAL----

PHASE FRONT N

RADAR POINT

where k is the wave number, 2ir/X. It was shown by Howard [121 that for a target composed of N
point scatterers on a line (Fig. 8.2), azimuth glint, in linear units, is

N N

a ajL; cos 12k(L; - Lj)cos 4,1
G, (+ - sin tA N I Jy- (8.2)G ~ ( , ) = s i n , -N N

X ajaj cos [2k(L, - L) cos 4,]
i-I j-I

where Li and 4, are defined in Fig. 8.2 and aj is the amplitude of the ith scatterer. The minus sign
arises because we define 4, in the opposite sense than that of Ref. 12.

E X v 7 *-APPARENT TARGET

416

N

n

Fig. 8.2 - Parameters of the classical glint problem
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The obvious extension of the phase-front-slope concept (Eq. (8.1)) is the phase-front gradient

Vi -4+I + rsm a (D. (8.3)
t a r unis azu gint i

From Eq. (8.3) and Fig. 8.2, we see that in linear units azimuth glint is

G. - I951 V(D m A_; a(D/aa4/
V( sin 004)/Olr'

Similarly, the elevation glint is, in linear units,

- Vr (-i) -d4)1/a
G.: 1R51 . V - - sinG 0 )/dr'

(8.4a)

(8.4b)

For 0 7r/2 , these equations reduce to the one-dimensional problem.

8.1.2 Poynting- Vector Direction

The phase-front model indicated that the now of energy was not necessarily radial at the radar.
This led Dunn and Howard [431 to show that the Poynting vector from an N-source target was normal
to the phase front. Therefore the Poynting vector concept was shown to be equivalent to the phase-
front-slope concept in predicting glint. Assuming that the Poynting vector of the scattered field at the
radar is

P -P. + Pi, + Pe -P, + P, n + P91
where P., Pi, and P9 are the radial, azimuth-tangential, and elevation-tangential
from Fig. 8.3 that the azimuth glint, in linear units, is

G,,-1W I RsPI p

Similarly, elevation glint, in linear units, is

PHASE FRONT

Fig. 8.3 - Azimuth glint visualized in terms of the Poynting vector
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F. 8.1.3 Axis Systems

To obtain equations that are useful for simulating the glint from an N-source target, we use N +
2 axis-systems: an Earth-axis system, a target-cg-axis system, and N, US-location-axis systems. All of
the axis systems are right-handed with the z-axis positive upward relative to Earth's surface:

The origin of the Earth-axis system is at the radar point. This system is fixed relative to Earth
with the x - y plane defined as being parallel to Earth's surface. Subscripting a vector with the
letter e implies that the vector is expressed in Earth coordinates. The unit vectors i, j, and k
are the unit vectors of this system.

The origin of the target-cg-3xis system is fixed at the radar point. The x-axis is colinear with
and directed along the sight line from the radar point to the target's cg. Subscripting a vector
with the letter s implies that the vector is expressed in target-cg coordinates.

The origins of the N US-location-axis systems are fixed at the radar point. The x-axes are co-
linear with and directed along the sight lines from the radar point to the US locations. Sub-
scripting a vector with an index implies that the vector is expressed in coordinates of the associ-

*: ated US-axis system.

Coordinates and vectors that locate points on the target relative to the radar point are indicated by sub-
scripting with the letter R: location vectors are subscripted with a target-point indicator, location-vector
coordinates are first subscripted with a coordinate indicator (x, y, or z) and then with a location-point
indicator (index or s). Whenever the letter R is used as a vector coordinate, it is an Earth-system, rec-

U-. tangular coordinate.

For both the gradient and Poynting-vector approaches, the most natural formulation is in spherical
coordinates. Figure 8.4 illustrates the spherical-system unit vectors that we use. We define the ith
Poynting-vector plane (ith plane) as the plane passing through the radar point that is normal to the ith
Poynting vector. The spherical unit vectors are defined relative to this plane:

h is perpendicular to the ith plane and positive away from the target,

,. is the intersection of the ith plane and the x - y plane of the Earth-axis system, and

. is in the ith plane such that i = x h and is positive downward.

:. From these definitions we see that m indicates the azimuth direction and i indicates the (negative)
elevation direction. We note that h is also aligned with the target's Poynting vector and, equivalently,

,= with the phase-front gradient.

8.2 Polarization Effects

The electric field polarization is an important parameter in determining glint but it has not been
explicitly addressed in previous work. The one-dimensional glint problem has always been analyzed
with the implicit assumption that the target elements radiate with the same polarization as the radar.
This is a reasonable assumption in many practical problems. However, if this assumption is not valid,
then current glint models can yield erroneous results. For example, consider the classic problem of a
target composed of two scatterers (Fig. 8.2 with N = 2). If one of the scatterers' reradiation polariza-
tion is horizontal and the other's is vertical, then an ideal horizontally or vertically polarized radar will
not sense one of the scatterers and there will be no nontrivial glint. The physical components of a US
will often exhibit multiple scattering and such scattering causes cross polarization [53].
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TARGET

.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.
RAR .

TARGET

RADAR R

n

Fig. 8.4 - Spherical-coordinate unit vectors

-: ^.Implicit in the glint concepts are different assumptions regarding the received-field polarizations.
The gradient concept requires knowledge of the phase of the received field. This phase can be obtained
accurately by assuming that the received fields from the USs are plane waves which are identically
polarized. The Poynting-vector concept requires knowledge of the Poynting-vector direction and there-

*_ fore only assumes that the received fields are planar; the received-field polarizations and directions of
propagation must be accounted for in this method because they contain the directional information.
For long ranges, the two methods produce results that are equivalent for practical purposes. However,

*: .: we prefer the Poynting-vector method because it accounts for polarization effects, it is more closely
related to physical concepts (power flow), and it does not require knowledge of rate-of-change proper-
ties of the US or multipath functions (Sec. 8.3).

$ -v 8.3 Phase-Front Gradient

From Eq. (4.5), .the magnitude of the received field has the form

E- g(k)Ir(PT, R) P g()r |£ Xi}AR- (8.7)

Equation (8.7) represents only that portion of the received field that is sensed by the radar. Assuming
: plane wave propagation, the vector representations of the fields sensed by the radar are simply

E - EPR (8.8a)

* ' and

_ _E (8.8b)

where 71 (= 377 fl) is the characteristic impedance of free space and Ak is orthogonal to PR such that
when the received polarization is horizontal, in the target-cg axis-system p = m and 1 = 1. Given the
large-range assumption, this formulation yields accurate estimates of the magnitude and phase of the
received field.

a' cj * 59



D.Y. NORTHAM

We begin with tl
that PT - PR (1, 0)

where we have implicit
the target-cg axis syster

,~~~~ 4

and

N
. A, sin 4i

0, N
a Aj cos 0_

: -:~~~~~~-

Hence,

_,j_~~~~~~~~~4

Similarly,

4)

:- -~~~~~~0

ie received-field representation of Eq. (8.7), where we assume, for simplicity,
T. Expanding the field into real and imaginary parts, the phase is

N
£ A, sin 0,

P -tan- I1-I
N
Y, A, cos 01,
/-I

(8.9)

ly included multipath effects (in A, and 01) for later use. Glint is referenced to
n. Therefore all derivatives must be calculated in that system. First,

|£ Al cos Nki F. Al

|- £Aco -| | A sn |,£ Al
i Al Cos -lJ'+ I I sI n I LA,

(8.10)

[£ACOSX,| £AI @'cos 40 + sin 0

N 2Aicos sin

(£AI costbi

|1 A, sin Oi v I-Ai 1 + sin q + AI I

( £A, cos4 lJ

NN a0 N N
£ Y. AiAj dJ cos ( -,J) - I I A

I I J_1 64 1 ,_ J_ 1

N N

£- £-

|£Al cos 0i

cA,
AAj -1-- cos (95i - Okj) - A,

aA, sin (q,- 0j)

sin (., - 0j)J

(8.11)

(8.12)

(8.13)

N N 
£, 7 Al A, cos (01 - j)

i-I J-I

|AAA a cos ( - O) - A, 0Ao si - 0j)1A*~j -- Cos (0 sr, (0i.-

N N

£ £ A, Aj cos (1,- j)
i-I ,-I
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- , ±i O' A, (8.14)

E AA} cos sin--j)
1-1 J-

IF,21 a,) depend on US orientation, not on range. Therefore 8aa/Or 0 for all

' N N N 8 1 F ,IE £ At A a } co (hi-+ i-I j- Or 2a /a si -- (X.i 5)

£ £AAj cos (0,-tJ)
-IJ-I

Lations are

N - i-Al0,aJ Cos (-- -aj)-Al d- (8.15a)
1-1 - 81

Al |A, J cos (&1 - j) -A, A Jl sin CO, - 4j)j
1 -- I --itr O

Al Aj a 9- cos (01,- 4j) -AlA,j i O j
I~ I 1-II (R 1'h)

G. - '' -. V QJswUj

N £ - cos (4,- ) ajA, 01, sin (',- 4A)J
I I 1AiAj Or' Or_

We recall that

) 2kIR,I + y(Ki, i,) + 6fIO) (8.17)

where y(k,, H.) is the phase due to muftipath and /,1(01) is the phase due to US orientation. Clearly,

specific knowledge of the US functions is required to use the glint equations in the form of Eqs. (8.16).

In particular, the derivatives of the US and multipath coefficient amplitudes and phases (with respect to

azimuth and elevation) are required.

For the classic problem of N sources on a rigid rod (Fig. 8.2), various assumptions are made:

ranges are large, the scatterer amplitudes and phases are constant with respect to rotations, and there is

no multipath. These assumptions yield

0, O, *2k (8.18a)

____ -2k , (8.18b)
+' ~ 2k, (8.18c)

Or

IFF 1, (8.18d)

and
OA~ aAj a OfI 0
04, 00b Or =lFJI * (8.18e)
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So that

G?, £jal aj aft cos J 4'j) (8.19)
N N
't. z ajaj cos (4,- 0j)

I-i J-t

We see from Fig. 8.2 that the large-range assumption implies that

4', - - 2k(L, - Lj) cos q (8.20a)

and

-IRI R, + L, cos 4 (8.20b)

so that

538al4,1 ~ -L, sin (8.21)

where the L are the signed distances of the scatterers from the target reference point. (We note that
Howard [2l'incorrectly uses the unsigned distances in his Eq. (5).) Using Eqs. (8.20a), (8.20b), and
(8.21) in Eq. (8.16a) we obtain the well-known Eq. (8.2).

8.4 Poynting-Vector Direction

Dunn and Howard [431 showed that glint was equivalent to the direction of the time-average
Poynting vector. The time averaging is performed over the period T, where co - 2 ir/T is the radar's
frequency. The averaging is valid because the phase terms of the received field (F., (8.7)) are approxi-
mately constant over the period T. The time-average Poynting vector is defined by

F - E x Ht. (8.22)
2

.* For an N-source target and no multipath,

f - 1g )PRPTR - (8.23)

Given that the polarization of both the transmitter and the receiver are horizontal, in the target-cg
axis-system the electric field and the Poynting vector can be represented in the forms

= g(k) (L ae'" i|Ms (8.24a)

and

.'~- g2n [, lak Cos .0i .. )|h. (8.24b)

where the a, and X, terms are obtained by taking into account the associated US-radar geometries.
(Note that the hT and hR vectors must be expressed in each of the individual US axis-systems.) Equa-
tion (8.24b) is not in a useful form because h, is not known directly. Therefore, we next derive an
equation for P in terms of the N, known Poynting vectors.

Equations for the locations of the USs were derived in Sections 5 and 6; given the radar point and
the US locations, the Poynting vector for each US can be determined. The total fields due to the USs

WS' ~~are1* are = g(g) ai e'n, (8.25a)
i-l
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and

X -aX ale Jo?,,

and the associated Po, nting vector is

g()N N2- z z a,ak COS ('01 'k ~n X ?k .
2, 1-1 k-l

We define the position of the ith scatterer relative to the radar (in Earth coordinates) as

R,-R , i+RyJ+Rk
where for clarity, the R. time-dependence is suppressed. In the ith US-system

no = R-I L(Rx, + Ryij + Ri k).

Because mn, is in the x-y plane of the Earth-axis system and is perpendicular to RI,

,i -sin oi-cos ,PJ
where Ad tan-' (Ry/R.) and RX = R ,i + Ryj (Fig. 8.5). Finally,

Yj i Y

IRJsin4,I Rx/ cos I |

- fRi + R.,I C k.

(8.25b)

(8.26)

(8.27)

(8.28a)

(8.28b)

(8.28c)

ith US LOCATION

- -'- -7
AA`0

Fig. 8.5 - The ith azimuth and elevation angles
in the Earth-axis system

By using Eqs. (8.28), the cross product term of Eq. (8.26) is

mn x Ik - in, X M'k X hk

Expanding Eq. (8.29a) in terms of known quantities,

Ry. sin Ilk + Rx cos Ok
i, x ?k = Rki 1 cos HAi

Ry sin Ok + Rxk cos Ok ^ Rz

+ y.s.nIkk 1 1 sin ,,j+ I k1I cos (ok - ,)k.

(8.29a)

(8.29b)

Equations (8.28) express the ith-system unit vectors in (rectangular) Earth coordinates. Referring to
Fig. 8.5 we see that the transformation from Earth coordinates to target-cg coordinates, TET, is

I
ET-IRk" 2

RI Z cos Us RZS sin i, --Rys sin 4, - R,, cos i5p
sin US -cos Os 0

R1,, RY * R~s

(8.30)

63

.2W

N.

[

S.

-0 r
.. i-

!: P.. � _:1.

I

0 '

I I4L

RZ, iI R
11 - in, X hi -__ -COS 4111 +sin �Ij -

I R::;i I IRIJ

Ri
z

X
Z

10,
Z

/I
- - __ -



D.Y. NORTHAM

where the subscript s indicates the target's cg location and 4,= tan 1 (RI/R ). The Poynting vector
* 15is now

2 ~N N: 2 | T.a~a co (0 -f)TE~tlX i~e (8.3 1a)

ITET | aj ak coS (4'0, TET )lX (8 .31 b)
21 i-I k-I

_ where the (ra x ?k) vector is expressed in Earth coordinates. The azimuth and elevation glint can now
be express.*d as

_ X, 1 alak cos (4O- i 'k)TET(ni X 7)Ce * m,

Ga = IK I -' A (8.32a)
I t i aiak cOs (O I - 4'k) TET( X ik)eJ | h.,
i- ak-l -

|£ I amok COS (o I-fk)dTET(Anl X ide| I [-1_0

Ge = I * * . (8.32b)

aak cos (I' -- dk) TET(in, X k)e h.,
_ ~~~~~~~~~~i-1 k-1

.' We note that for small US-stparations and long ranges, i,, x sk h so that the denominator of Eqs.
(8.32) is approximately the target's RCS (Eq. (7.7a)).

8.5 Multipath Effects

For low-grazing-angle illumination of ships, over-water multipath affects the received signal. In
oction 4, we described a multipath model appropriate for point-source scatterers. In this section, we

.s, ~~discuss the modeling of the effects of multipath on glint.

A different method of multipath modeling is, required for each glint concept because they are
developed under different assumptions. The phase-front gradient method requires explicit knowledge
of only the received amplitudes and phases whereas the Poynting-vector method also requires explicit
direction-of-propagation information.

.8.5.1 Phase-Front Gradient

For the phase-front gradient model, we view multipath as an alteration of the received amplitude
and phase from the US. Referring to Eq. (4.17), we rewrite Eq. (8.9) to explicitly show the multipath
effects:

£ IFj2 a, sin 4i

*- o)tan t (8.33)
IF,21 a, cos 4'E

:- ~~~~~~~~~~~~~~~~~~~~i-l
where A', is defined by Eq. (8.17). From Eqs. (8.16) we see that the terms of interest are the partial

- derivatives of 1i2Ia, and 4, with respect to r, 4,, and 0 (in the target-cg axis system). Because there
- are in general no physical interpretations for these rate-of-change processes, they would, at best, be dif-

ficult to estimate. They are also analytically complex so we will develop the general multipath formula-
tion only for the Poynting-vector method, which yields physically-meaningful results. However, we will
analyze the special case of wrv calm (smooth) seas.
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From Eqs. (4.16) we see that the ith multipath factor is

F, - (I + p~, cos ae + pp.) + j(p5 , sin a, + pQ,). (8.34)

For smooth seas, pp, = 0 and pQ I 0 (their variances become zero) and we have

Fj = (1 + cos a,) + j sin ai (8.35)

where

,IF, = [(I + cos a,)2 + sin2 ai]l 12

= (2 + 2 cos a,)" 2 (8.36)

and

yjI-tan- ll aI (8.37)

The partial derivatives with respect to a parameter p are

Op d =F I - 2 cosa -P (8.38a)

and

Oy, _ (1 + cosa,) . [ sina i
Op (1 + cos aj) 2 + sin2 ai ap 1 + cos a j

- * Oa, (I + cos a,) cos a + sin2 a;
s~~~ -=

:--. -.O, ap (I1+ cos a,)2 + sin2 aC,

-V = I Oac (8.38b)

Clearly, OaaIlp is the significant parameter.. We use thc well-known approximation for path-length
difference

[ ARj 2hR h (8.39)

for the difference between the direct and reflected path lengths so that

..2'khi = IRR h, . (8.40)

Because 4, is the azimuth angle,

Oa=, (8.41)

The coordinate r is the radial distance so that

Oai ~ _ 2khs h, (8.42)

". -Finally, 0, is an elevation angle and (see Fig. 8.6)

cos O- =I R (8.43)
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where, from Fig. 8.6, R2, h k - hR. Now

R 2 , + hRit
aI 2khR[ A, 

-hRh + Cos O0j (8.44)

so that

0a, 1 h 2IR,! 00 (8.45)
2kRV k!2 0 -io1~J

*Because sin 0, 1, 00,100 1, hR/fR,! « 1, and 8IRI/00 «< IA",, we have that for a smooth
sea-surface,

ea MkR. (8.46)
00

Hence, the multipath components of the phase-front-gradient formulation are

*~~~~~~~~~~~~~~~~~~a~l 04 (8.47a)

0, ~~~~~~~~~(8.47b)

OIF,21_ 4khRh, [2khR hi 

___ - choh (8.47c).
r Or 

'-A. * _~~~~~~~~~~~~~y OR hi(.4d

OfF,2!= cosR 2COhS (8.47e)

and

-khR. (8.47f)
00

8.S. 2 Poynting- Vector Direction

*To introduce multipath into the Poynting-vector formulation, we modify the received fields by the
multipath factor, F,2, described in Sec. 4.4 (Eqs. (4.18)). This factor modifies the direct-return scat-
tered fields and induces N apparent (image) scatterers. This model allows the obvious extension of Eq.
(8.3 1b) to

_ [~~~2N 2N
2Fq TET , I MMkajak cos, (4',- 4)('rn X (8.48)

271 1-1 k-I

* ~~~~~~~~~~~~~~~66
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where

Ml |F (Fi - I) N I K, i < N1-NtFi , 1(i• <N ,

a1 - am
01 0,, I KN, m -I +N,

Al 4'mJ
rn=MM

and, from Fig. 8.6,

" -= R;= R:= + RYj-(hR + h)k, N + I < i < 2N.

RADARk

R_

ith US LOCATION

R..

hi

Fig. 8.6 - Multipath geometry

Equation (8.49c) implies that Eq. (8.28c) becomes

R , # R , ,#| Ry, sin t i + R COS ,
=IRI COS W+ IR Isin qij - I ' l-tlc' k

for N + I < i ( 2N. Therefore when accounting for multipath, the glint equations become
2N M2N~ kcs(4,-4k E (~,i~In

Ga= fRsf

and

G; = Ibl.

Iz £ MiMkajak cos(0i- k) TET(miinX |ke . nSh

i-l k-l

2N 2N c
I £ MiMk ai ak cos (0 i - 0k) TET (ini X |k0 * [-7,1

lIJ - I A5 1I2N2
£ I Mi'Mkaiak COS (4', -. 4k) TET(ln; X lk .- nS

li-l k-I 

£ £ ViMkaM aka cos (4',- -'k) TET( ni X lk)
i-I k-I

As in Eqs. (8.32), for small US-separations and long ranges the denominator of Eqs. (8.50) approxi-
mates the target's RCS.

It is clear that Eqs. (8.50) are more natural and accurate for use in modeling the glint of N-source
targets than are Eqs. (8.16). Equations (8.50) are used in the simulations (Appendix C).
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9. SIMULATION RESULTS

a' In this section we briefly summarize the results of simulations that were performed by using the
method of Section 6 to simulate US motion and the equations of Sections 7 and 8 (as modified, for

. efficiency, in Appendix C) to simulate RCS and glint. The source code that was used is presented in
Appendix D.. Because of the number of parameters affecting the scattering process, a parametric study
of the model was beyond the scope of this report. Among those parameters are:

ship structure
ship maneuvering
ship speed
ship response to the sea (RAOs)
sea state
sea structure (sea, swell, etc.)
ship heading relative to the dominant wave direction
radar-to-ship aspect angle
radar-to-ship elevation angle
radar frequency
radar pulsewidth
relative motion between the radar and the ship
US amplitudes
US phases
US locations.

We note that when measurements of ship scattering (e.g., RCS or glint) are made, measurements of
the first twelve parameters listed should also be made.

In the simulation studies, we have investigated the qualitative effects of variations in ship
maneuvering, radar-to-ship aspect angle, and multipath (which is primarily a function of radar-to-ship
elevation angle, radar frequency, and sea state).

9.1 Simulation Parameters

In the simulations, the radar's wavelength was 3 cm and the radar was located at a fixed point that
was 40 m above the sea surface. The ship's position was initialized at 10 km from the radar. This
yields grazing angles on the order of 0.250.

Two maneuvers were considered for the ship: straight-line motion and turning. For the straight-
line motion the ship's speed was 10 kn, and for the turning motion the turn rate was 0.4°/s and the
ship's speed was 6 kn. The maneuvers were simulated with and without multipath effects. For the
straight-line motion an rms wave height of 0.762 m was used because this corresponds to the sea state
associated with the ship-motion spectra that were used (Appendix A). For the turning maneuver an
rms wave height of 0.135 m was used and the ship-motion spectra were changed from the spectra of
Appendix A by reducing the rms values by a factor of 10 for each of the six motion processes; this was
done to approximate the ship's motion in slight to moderate seas. For the geometry of the simulations
the sea-roughness factor (a fundamental parameter characterizing multipath, defined by hsin tp/X where
h is the rms wave height, 4, is the grazing angle, and X is the radar's wavelength; see Ref. 49) is on the
order of 0.025 for the turning motion and 0.133 for the straight-line motion. The simulation time-

- increment was 0.002 s, and the simulated time was 2.1 s.

The USs used in the simulation were chosen based on visual identification of scatterer type and
approximate projected area. For X = 0.03 m the sphere-like (constant RCS) scatterers have amplitudes
that are small relative to the flat-plate and corner-reflector types, assuming comparable projected areas.
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Therefore only flat-plate and corner-renector types were used in the simulations because such scatterers
dominated the ship's structure. A ship was chosen for which photographs were available and the USs
were chosen for three aspect angles: broadside, aft-quarter, and stern. Table 9.1 lists the location, mag-

w ~~~nitude, and type (flat-plate is type 2 and corner-reflector is type 3) for the USs that were used. Figure
9.1 is intended as an aid in visualizing the ship representation: it contains two-dimensional plots of the
US locations relative to the ship's cg using the location data from Table 9.1.

9.2 Discussion

The output of each simulation run is presented as a figure composed of four plots: RCS, azimuth
glint, and elevation glint as functions of time, and azimuth glint vs elevation glint for each time instant

^- . (connecting the points from instant to instant). RCS is plotted in dB above one square meter (dBsm),
and all RCS plots use the same scale. The scales for the glint plots vary (due to the nature of glint).
These plots are Figs. 9.2 to 9.15.

Figures 9.4 through 9.15 display the output of twelve simulations. The parameters varied in these
simulations were maneuvering (straight-line, turn); aspect (broadside, aft-quarter, stern); and multipath

A-- - (yes, no). Although the parameter variations are limited, the outputs indicate the qualitative effects of
the parameters on RCS and glint. In the remainder of this section we discuss some of the most salient
features of the output data.

9.3 Multipath Effects

A-:. :. tions Figures 9.2 and 9.3 illustrate the effects of (point-source) multipath for the two multipath condi-
- - tions chosen. In each case the only motion is that of the sea surface; the ship scatterers do not move.

We note the following implications of the sea-roughness factor: the rms waveheight of 0.762 m implies
that diffuse-component multipath effects (random) dominate those due to the specular component and

-. the rms waveheight of 0.135 m implies that the specular effects (deterministic) dominate. We also note
that the diffuse multipath effects arc essentially independent (except through variations in the value of
the roughness factor) of ship motion for our scenarios, but the specular multipath effects, which are
deterministic, are of course correlated with that motion. Clearly, both specular and diffuse multipath
modulate the scattered fields further complicating the problem of US identification in the presence of
multipath.

9.4 RCS

It is clear that the correlation properties of the RCS are strongly dependent on aspect angle. We
see this in Figs. 9.4(a) through 9.15(a) and it is quantified by the normalized spectra shown in Figs.
9.16 through 9.18. (These spectra were calculated using the TSAP program, which is described in Ref.

- - 96. A time series of 1024 points, 2.048 s. was used. First the autocovariance function was calculated
using a 12.5% lag. This result was windowed and then an FFT was used to obtain the spectral esti-

5.i ~ mates.)

Examining the quartering-aspect RCS in Fig. 9.5(b) we see that as shown in Chapter 7, even
assuming constant amplitude functions (Table 9.1(b)) the slow, oscillatory motions of the ship can
yield RCS realizations that appear nonstationary over short time-intervals. (Note that there is an
apparent decreasing trend in the variance of that data.)

9.5 Glint

From the data we see that glint is a process with a wider bandwidth than the RCS process. Figure
9.;9 contains examples of glint spectra (calculated by using the procedure described in Sec. 9.3) for
data (from Figs. 9.5 and 9.8) that exhibit no obvious nonstationary characteristics in the mean or vari-

*. ance.
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Table 9.1 - Scatterers That Were Used to
Model the Three Aspects

(a) Broadside

Location (WRT CG) RCS Scatt. Plate
x Z am. Type Diam.

-50.0 -4.0 2.0 4.0 3
-5.0 -4.0 7.0 2 5.0

3.0 0.0 20.0 3.0 3
10.0 -4.0 7.0 2 5.0
20.0 -4.0 7.0 2 3.0
30.0 -3.0 15.0 *5.0 3 ___

(b) Aft-Quarter

Location (WRT CG) -RCS Scatt. Plate
x z amp. *Type Di.

-50.0 -2.0 3.0 3.0 3
0.0 -2.0 7.0 6.0 3

3.0 0.0 20.0 3.0 3
14.0 -3.0 7.0 5.0 3
17.0 0.0 20.0 4.0 3
30.0 0.0 7.0 3.0 3 ___

(c) Stern

Location (WRT CG) RCS Scatt. Plate
x ~~~~amp. Type Diam.

-60.0 0.0 0.0 2 6.0
-50.0 0.0 2.0 4.0 3
-40.0 0.0 5.0 4.0 3
-25.0 0.0 7.0 2 10.0

3.0 10.0 20.0 13.0 3 ___

* ~~~~~~~~~~~~~~~70
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-. (a) BROADSIDE

I. ______
cg

_ _(lb) AFT-QUARTER

_ f~~ ~~~~~S:

y

_ (c STERN

Fig. 9.1 -Two-dimensional schematics of the US locations for each aspect
(drawn to relative scale)
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Fig. 9.8 - Straight-line motion, ship speed - 10 kn, aft-quarter aspect, rms wave height - 0.762 m
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Fig. 9.9 - Straight-line motion, ship speed - 10 kn, stern aspect, rms wave height - 0.762 m
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Fig. 9.11 - Ship turn rate - 0.4°/s, aft-quarter aspect, no multipath
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A wc!l-known property of glint is also illustrated in the data: sharp decreases in the magnitude of
RCS ("fades") produce sharp increases ("spikes") in the magnitude of glint. Recalling from Section 8
that glint is the ratio of two functions where the denominator approximates RCS, we see that this fade-
spike correlation is to be expected.

If Figs. 9.4(b) through 9.15(b) are interpreted as scatter diagrams, then we see that azimuth and
elevation glint are in general not strongly correlated. Only the stern aspects show strong correlation
(due to the associated scenario producing very little signal fluctuation). To further confirm this obser-
vation, cross-covariance functions for the glint data of Figs. 9.4, 9.5, 9.7, and 9.8 were calculated (using
TSAP) and are plotted as Fig. 9.20. We suspect that the relatively strong but brief correlation that does
occur (at zero lag) is due to the simultaneous occurrence of spikes. We also note that multipath
appears to contribute to decorrelation between azimuth and elevation glint.
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(d) Aft-quarter aspect, rms wave height - 0.762 m

Fig. 9.20 - Cross-covariance functions for the glint data of four simulations
(straight-line motion, ship speed - 10 kn)

An examination of the azimuth-glint plots shows that the data are often asymmetrical about a
mean near zero (e.g., in Fig. 9.4(c) the positive values are more correlated (smooth) than the negative
values). This suggests that such data may not be Gaussian distributed. (It is known that some radar
targets display glint statistics that are approximately Gaussian [97].) This observation was confirmed by
using a Kolmorgorov-Smirov test of fit (from TSAP) to test the hypothesis that the azimuth-glint data
is Gaussian distributed: for each time series the result was rejection of the hypothesis at an a-level less
than 0.01. This result also holds for the elevation-glint data except for one time series: that in Fig.
9.10(d). We comment here that what we simulated was "ideal" glint in the sense that it cannot be
exactly measured by radars. Constraints on radar system performance (antenna pattern effects, finite
bandwidths, system noIse, etc.) may result in error signals that are more symmetrical (due to smooth-
ing of sharp variations) and hence more likely to appear Gaussian.
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Figure 9.21 illustrates the correlation between RCS and azimuth glint for four of the simulalionq.
We note that a weak but definite correlation exists between these two processes.
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Fig 9.21 - Norin.dled cros%-c(5ariances between RCS and azimuth glint in the
absence of multipath

10. CONCLUSiONS AND) FURTIIER RESEARCH

The major result (if this research is the development of a unified stochastic model and associated
simulation for the EN! scattering from complex objects in the presence of overwater multipath. By
modeling each component of this very complex problem using an N-source formulation, we have
obtained a unified RCS-glint model that is useful in applications. We have introduced the concept of
unit-scaulerer and shosin that it is a, generic element for use in modeling scattering effects. Though by
defining the unit-scatlerer as our generic scattering element we have, in a sense, only shifted the
scattering probleim from thc enlire object to sub-parts of the objcct, we suggest that the unit-scatterer
concept is fundaimental to the practical, pulse-by-pulse modeling and simulation of scattering from com-
plex objects We believe that it mnay not be necessary to precisely characterize unit-scatterers to obtain
good approximations to the total scatteringg If this is the case, then having determined classes of US
types one could quickly build monils and( efficient simulations for the scattering from complex objects
by using elements fronm these classes as building blocks.

We suggest f;our maijor areas of' research for extension of this work:

(I) TIhe primary area concerIs the identification and characterization of unit-scatterers.
Particularly useful (an(d cost effective) would be simulation studies using the geometric
simulations such as those at the NRL and the Georgia Institute of Technology. It would be
important to
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(a) identify US types,
(b) characterize US amplitude functions, and
(c) characterize US phase functions with emphasis on determining the rate-of-change of phase

with US rotation.

(2) Analysis of existing ISAR data for identifying and characterizing unit-scatterers as suggested
in the first area.

(3) Second-order-statistica! comparisons of simulation data with measured data where the
simulation data is generated using the parameters associated with the measured data.

m (4) A study of the effects of multipath on objects that are distributed to determine a better
model for the multipath effects on unit-scatterers than the existing point-source models.
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Appendix A

AN EXAMPLE SIMULATION OF SHIP MOTION

A simulation of the 6 dof motion for a ship's cg is described in Section 6. This appendix presents
the output of a simulation that was implemented according to that description. The ship chosen for
simulation is the DD963 because that is the ship used as the example in Ref. 78. A ship speed of 10
knots and a relative ship-to-dominant-wave heading of 30° were chosen for the simulation. Figure Al
illustrates the spectra calculated by DTNSRDC for the DD963 at 10 knots. The center frequency,
bandwidth, and rms values used in the simulation were estimated from this figure and are listed in
Table Al. The frequency increment, Aw, was chosen to be constant and equal to BW/10 for each com-
ponent process. The simulation runs used a time-step size of 1.0 s in generating.six, 2048-point sam-
ples. The first 300 points of each of these samples are plotted as Fig. A2. The samples were analyzed
using the time series analysis package described in Ref. 79 to estimate the associated spectra and rms
values. The resulting rms values are tabulated in Table A2 and normalized spectral estimates are plotted
in Fig. A3. Figure A4 illustrates 2-s samples of the motion processes generated by using a time-step
size of 0.002 s.

::
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ROLL 14)

PITCH Ot

YAW he

I-

SURGE {X}

SWAY (VI Fig. Al - DTNSRDC motion spectra for the
example simulation

HEAVE WIn

(b) Linear-position
spectra (ft)

Table Al - Spectrum Parameters That Were
Input to the Example Simulation

Process co (Hz) BW (Hz) RMS Value

X 0.061 0.018 0.344
Y 0.076 0.029 0.357
Z 0.069 0.025 0.411

PHI 0.083 0.022 0.0539
THETA 0.065 0.018 0.0089

PSI 0.072 0.025 0.0066
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Fable A2 - RMS Values of the
Simulated CG-Motion Processcs

Process rms value

X 0.334

Y 0.360

Z 0.417

PHI 0.0538

THETA 0.0088

PSI 0.0067
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Fig. A4 - Simulated cg-motion processes for a short time interval
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Appendix B

AN ESTIMATE OF RANGE VARIATION DURING
A SHORT TIME PERIOD

Let ki(t) be the range from the radar to a scatterer on the ship. The phase of the received field

due to range is

_( A lIkG)I. (B 1)

To estimate the variation in IR,, i) over short periods of time, we use the measure

E!AR2 )1"2 = Ef(fRl(t + r) -Rj~() 2 P1 2 (B2)
. From Eq. (6.5b),

ARj7 = (t + 7)RL(t + T) + R + ( )JIT, (I)R (z) + RX)W. (B3)
For simplicity we assume that there is no maneuvering, hence T() - I and RE() RE(O). There-

; fore
-AR, = IKLt + r) + RE(O)I - I kL(1 ) + KE(0)| (B4)

From Eq. (6.5),

AR. = | .(0) + T, L[Y, (t + T) - Y, (0)] + WE(O)

- IR,(0) + T, .v,(i) - .v,(0)] + kE( 0)jI (B5)

Collecting the initial terms,

AR, = kR, + T, Y,, (t + T)1 - °o + Tx, W I

• IT,Ix-,g(t + r) - Yg" I (B6)
Expressing the difference in Eq. (B6) in terms of components,

AR, < IT,[Ax, A),, Az, AO, AO, Oq1 Tj (B7a)

and

AR, (X - zAO - yAtp) 2 + (A)' - ZEAS + VAql)2 + (Az + ),,A0 xAO) 2 ]'12 (B7b)
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! so that

AR?2 < Ax 2 + (zAO) 2 + (yA&) 2 + Ay2 + (zAO) 2 + (x,A&p)2

+ Az2 + Az ,A) 2 + (x1AO)2 + cross-product terms. (B8)

*, rs',Because the component processes were assumed to be independent, we have
,9.

E(AR 2 )- E(AX2 ) + E ) + EMAZ)2 + (y,2 + z,2)E(A402)

+ (XI2
+ zi) E(A0 21) + (x1

2 + y1
2)E (Av,2) (B9a)

3 where each expectation has the form

E(Ax2) - E([x(t + ) -x(t)] 2) 2R(0) -2R,(7). (B9b)

: - As described in Section 6, a useful approximation to the covariance function for each process has the

form

F R,(r) - o.Reail l cos wor (BlO)

where a is 1/2 the bandwidth and wo is the center frequency of the ith process. Using these approxi-

-- mations we have, for example,

E(AxI) E((x(t)-- x(t + r) 2 2-2 e-e COl S WovT]. (BlI)

For a ship, three scatterer locations yield the largest values for the position coordinates: the loca-
*- : tion highest above the ship's cg and the locations at the bow and stern. For the example ship, the

DD963, xm.x = 50 m, y',. = 5 m, and Zm,.x 15 m. Because of ship structure, each maximum does
not occur at the same location. The broadside aspect presents the largest range variations because the

* largest angular rate, roll, has the maximum effect on the z-axis components and the largest scatterer-
distance from the cg, along the x-axis, also yields its maximum range effect. Even if the scatterer was
located such that the location maxima occurred, we find that using the position values above, the pro-

- - : cess values from Table Al, and a typical PRI of 7 0.002 s, E(ARI) /2 2.1 cm, and for r 1.0 s,
- E(ARI2) - 0.42 m.

_
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Appendix C

SIMULATION EQUATIONS FOR RCS AND GLINT

We use Eqs. (7.7a) and (7.9) to simulate RCS where, in anticipation of the glint simulation, we
modify them to be in the form

2N 2N
J z y M~a1MJa} cos (Cs -0 (Cia)

-I_ J-t (

and

'Pi- = - (R, (Ik,- IRkjI) + CO,(&) - pj(IJ) + 7,(ki, @9) - yj(j - j) (Clb)

where

jJIF I I < k < N Ca
Mk I Fk(Fk -1 0 N + I < k 6, 2 N Ca

and

< Fk 1 < k < N 2b)
Yk I< Fk(Fk-) 0 N + 1 < k ( 2N.

We describe in detail the simulation of the multipath coefficients, ivk, in Refs. 49 and 98.

The glint equations used for simulation are Eqs. (8.50). Next, we make an assumption that sim-
plifies those equations for use in the simulation.

Because we have limited our studies to small-grazing-angle illumination of the ship and because
the ship's cg is near Earth's surface,

«Z <RX2 + R 2 (C3)
xj y, 0

which implies that (see Fig. 8.5)

IXYI Ikj (C4a)

and

IRXY~~~~l-I~~~il- ~(C4b)

Equations (C4) imply that

sin ip, ys, (CSa)

cos t -Rx (C5b)

sin tpi=- (CSc)
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C', and

s ~~~~~~~~~~~~~~cos VPl (C~d)

By use of Eqs. (CS), the transformation matrix in Eqs. (8.50) becomes

COS 0t cos cos 0 sin 5 -1

TET7 sin co5 -COs 5 0 (C6)
l ~~~~~~~~~~~~cos sin qI, cos 0,

'-- and the cross product term becomes, from Eq. (8.29b),

* .- (mn x 1k)e - cos ij + sin ',j + Cos 6k COS (Pk - )k. (C7)
Therefore,

Uni x 10, TET(4 in X70

- lcos 65 cos 0, cos ip, + cos 65 sin 5 sin ici Cos Ok COS ('k- Jii

+ (sin q, cos q,, - cos p, sin 4lmn

r. + (cos Yfu cos 4ii + sin tps sin tip + cos 65 cos 6k cos (4Pk -0] (C8a)

[cCs 6, COS (PI - 'I1 ) -COS 6k cos (W'k -

-- sill (6Ps -- . th,) + [cos (t, -O d) + cos 65 cos 6k cos (Ilk -Oi)h 1. (C8b)

- * By use of Eq. (C8b) in Eqs. (8.50), we have
2N 2N

M £ a, Mj a, cos ( O-+j) sin (f- P)

* Ga ~~ l Rs l 2N 2N(Ca
M, ai Majacos (0,- j) cos (0, - iPx)

and
U 2N 2N

- MI Aia MjMaj cos (41k - Oj)[cos oj cos (Iij - tp,)-cos , cos (4i, - o

-. : Ge-l~sG 2N 2.V
* X, £ MaMj a, cos (4- Oj) cos (6p - )U s 9- I i- I

.,-'. ~~~~~2N 2N
, MiaiMjaj cos (01 - .j) cos Oj cos (6j - )

- . - Ik31 L1~ 2N * -CO 9 . (C9b)
: MiaiMjaj cos (01 - 0j) cos (i - pi)

1-1 j-I

Because sine, cosine, and arctangent functions are time-expensive an digital computers, we use Eqs.
(CS) in Eqs. (C9) to obtain

\ ^ + R* | R XR R,,- Ry, ty,| R.+ R R. -R. R.

~~~l 1/4!~~~~~~~ . k,! I-A ~k1 Al (dk)

(meX I~s R Rx, -|x. R R | R I | Ry II' IY |

+ 1 IK I IR I mS+I -I IR-J nS' (lJ
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where we recall from Section 8 that

R i + RJ + R. k
= i ,, + R ,, k(hR

R |RX~i+ Ry - OR + hj)k

= RXii + Ryj + RJk.

i i N
N + I S, i 2N

Therefore the simulation equations for glint become

I GC-- I I

2N 2N
7, Y Mja;Mjaj cos (41i
j- i-I

- Oj)

2, 2.V
W ajMrAja. cos (0. -41j)

i-I j-1

I RYS -R RXS Ry,

IAl'

RX Rx, - Ry RyJ

IR IiI

and

Ge IR 5 !

2N 2.V

I I MjaXMja^ cos (41, -
i-' j-I

2N 2N
T Y AfaMjaj cos (1, - 4j)

j-I I-

c IA-5I

2v 2,v RX RX. + RyRy,
I Af aiAfj.aj cos (41 - Oj)Rz | II 1'

I j- I I - Aj

2AV 2.v RxR R -RysRy
X, M'aiAfjj cos (4 j- 1) ij |R5|i-I J-1W- -Al

-R..

Finally we note that because of the long-range assumption, (tp, - pi) and (Opi- P)
that

cos (ql5 - (Pi) -= I

and

cos (qlj - j) =

92

(Cl2b)

(Cl2c)

are small angles so

(C13a)

(Cdin)

(Clla)

(Cl1b)

(C12a)
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By use of Eqs. (C13) in Eq. (CI2a) and Eq. (Cl2b), we have

2N 2N RyR.,-R, Ry,

i £ MiaiMjaj cos (do-})1 'i

i-I j-l ARI 

G.z IR3 I

and

G.- IA!

2N 2N
, X MjajMjaj cos (4, - 41)

itI j-l

2N 2N IyXRe RR
| £ MiaiMjaj cos (01 - o,)R- | !AA2

i-I J-l - k j 1

2N 2N

| Ma, Afj aj cos (4O - Oj)
i-t j-l

3
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"-9

(C14a)

- R2. (Cl4b)
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Appendix D

SIMULATION DESCRIPTION AND SOURCE-CODE LISTINGS

- The simulation was written in FORTRAN and run on a PRIME computer system. A flow chart is
* presented in Fig. Dl. Parameters are input (1) directly by the user and (2) via data files. An example

of user-interactive data is shown, in the proper sequence, in Table Dl. The first input data-file defines
the ship-motion spectra and the second defines the US parameters; example files appear in Figs. D2
and D3. The ship-motion input-file is called SHIP-PARMS and the US-parameters input-file is called

,- -SCATT-PARMS. Data are output in binary format, one record per time increment. The output file-
names are defined in a DATA statement in subroutine INIT. We note that the compiler replaces the
PRIME statement

$INSERT filename

,: with the contents of the file that is named 'filename'.

CALCULATE SHIP'S POSITION
START OUE TO SEA MOTION

OPEN OUTPUT CALCULATE US LOCATIONS
FILES RELATIVE TO THE SHIP'S CG

READ-IN THE PARAMETERS CALCULATE SHIP'S POSITION
FOR THE SHIP-MOTION SPECTRA l DUE TO MANEUVERING

READ-IN THE PARAMETERS CALCULATE THE RANGE FROM
-FOR THE USs * THE RADAR TO EACH US

IF MULTIPATH IS DESIRED, l CALCULATE RCS AND GLINT
INITIALIZE THE MULTIPATH PROCESSES|.I

OUTPUT DESIRED DATA
_- ~~~~~~~~~CALCULATE AND STORE THE

_.SHIP-MOTIONSPECTR

YES

CLOSE OUTPUT
FILES

I Fig. Dl- Simu'ation fow chart

:

-. 9U
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Table Dl - The User
Input-Sequence

0.0300 Radar Wave Length
0.0 Pct. Range Error
0.002 Step Size
0.135 Wave RMS
Yes Multipath Indicator
10.00 Run Time
10000,7,0 Initial Ship Position
0.0,3.19,0 Initial Ship Speeds
88.0 Initial Ship Orientation
0.0070 Ship Turn Rate

SCATTERER DEFINITIONS

LOCATION (WRT CG) RCS SCATT. PLATE
X Y Z AMP TYPE DIAM

-50. -4. 2. 4. 3 0.
-5. -4. 7. 0. 2 5.

3. 0. 20. 3. 3 0.

10. -4. 7. 0. 2 5.

20. -4. 7. 0. 2 3.

30. -3. 15. 3 0.

Fig. D2 - A US-parameter input-file

CG-PROCESSES SPECTRUM-DEFINITION

CENT FREQ (RAD/S)

0.386
0.477
0.432
0.523
0.409
0.455

BW (RAD/S)

0.114
0.182
0.159
0.136
0.114
0.159

RMS VALUE

0.344
0.357
0.411
0.0539
0.0089
0.0066

Fig. D3 - A ship-motion input-file

The remainder of this appendix lists the insert files followed by the source-code except for that
used to simulate multipath. The multipath source code is presented in Ref. 98.
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C SINSFPT FILES (PPIMF FOfTEAN)

C SINSERT SI7F
INTFGFP DIYEF,DIMEN2
PA.RAMETER (DIMFN=25)
PARAMETER (DIMFN2=DIMEN*2)

C SINSERT BLOCK1
INTFGER*4 ISEED

.- C0YCON/BLOCK1/ISFED,DT,TIME

C SINSERT BLOCK2
CO'vON/BLOCK2/XYZ(3,DIMFN),AMP(nlMEN),T(3,6,DIMEN),

* * CRTFR.Q(6),PNDWT4(6),RMS(6),RNGERR,WAVRMS,RADHGT

C FILE: MAIN

CALL DRIVER
CALL EXIT
FNn

C FILE: DRIVER

C PURPOSE:
C TO GENERATE A TIME SERIES OF RADAR SIGNALS RESULTING FROM
C ILLUMINPTION OF A SHIP AT LONG RANGF. THIS ROUTINE IS THE
C DRIVER FCR THF PACKAG-E.
C
C INPUT:
C ARGUMENTS:
r NONF.
c
C OUTPUT:
C ARGUMENTS:

C
C AUTHOR: D.Y.NOPTHAY.
C DEVELCPED: "/82.
C MCDI7IED: 1982, 1983.

SUBPRUTINF DRIVER
SINSFRT SYSCOI)>ASKEYS
SINSFPT RCS>ROUTITNS>SI7r
SINSFRT RCS>ROUTINES>PLOCK1
SINSFRT RCS>ROUTINES>PLOCK2

DOUPLE PPFCISION TMP,DPFLRI(3,DIMEN)
DOUP!.F ?RFCISICN DY,DY,D7,rR
LCGICAL UPDATE(DIMEN),FIRST(DImFN),MPFLAG
INTFGFP SCTTYP(DIFFN)
PARAMETER (PION2=1.571,TWOPI=6.2832)
DYFYNSTON` Lt'NITS(9),XSPIF(6),XC'(6),RT(3,DTMEN),PSI(T'IMEN),

* DIAM (DIMEN)

C INITIALIZE SIMULATION
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CATL IIT(I(JNITS,NSCATT,SCTTvP,DIPM,WAVLEN,MFFtAC)
LUN 1 =LUNITS (1)
LUN2=LUNITS (2)

S '. ' LU! !=LUPNITS (3)
LTUNU=LUNITS(I4)
LUN5=LUNITS (5)
LUN6=LUNITS(6)
IUN7=LUNITS (7)
.lUNO=LUNITS(8)
LUN9=LUNITS(9)

10 CALL TNOUA('ENTER MAX TIME: ',16)
READ(1,*,FPR=10) T'9X
MAX=TMAX/DT+1
DO 15 T=1,DIMEN

FIRST(I)=.TPI'E.
UPDATE (I) = .TRt'F.

15 CONTINUF
C

I

C

BEGIN SIMULATION LOOP
DO 90 I=1 ,MAX

TIMF=DT*I

UPDATE 6 DOF POSITION VALUES FOR SHIP'S CG
DO 20 J=1,6

CALl POCES(J,CNTFPQ(J),PN1^W.''(J),O,.
XCG'J)=RMS(J)*XCG(J)

2C CONTINUF

FALSE.,XCG(J),TImF)

C UPDATE SCATTEPFP POSITIONS
DO 35 K=1,NSCATT

CALL LINMAP(T(1,1,K),3,f,XCG,RI(1,'))
DC 30 J=1,3

RI(J,K)=RI(J,K)+XY7(JK)
30 CONTINUE
35 CONTINUE

c
C UPDATF SHT? MANEUVPRINC PCSITICN

CALL SHIP(TIMFXFHIP)

C UPDATF PRrAP-TO-SCATTFRER RANGE
nO UO Y=1,NSCATT

CALL TRNSFP(f 9I(1,K),YSHIP,?ADHCTRnLRI(1,K))
PSI(K)=ASPECT(YSHIP(1),XSHIP(2),XSHIP(6),K,FIRST(K))+XCG(6)

4C CONTTNUF
c
C UrDATF PCS A;N'r GLINT PPOCESSFS

PHI=XCG( U)
CALL cIrNIS(PSI,kJSCATT,SCTTYP,DIIM,PHI,WAVLEN,DBLRI,YSHIP,

* RCS,AZGLNT,ELCLNT,YPFLAG)
C
- OUTPUT DESIRED DATA

W:-T-(TUN7) PCS
WRITE(LUNP) AZGLN'
WRITF(LUN9) FI.CLNT

C Tt'RN OFF INITIALI7ATION FLAGS
rO PC Y=1,NSCATT
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IF(.NOCT.FIFST(K)) CO TO PO
FIPST(K)=.FATSF.
UPDATE(K)=.FALSE.

80 CONTINUE
90 CONTINUE

C CICSF OUTPUT FIIES
DO 100 I=1,9

CALL CLOSSA(LUNITS(I)-U)
100 CONTINUF

END OF SIMULATION
RETURN
END

C FILE: INIT

PURPOSE:
TO INITIALIZE THF SIMULATION PARAMFTFRS.

IN PUT:
ARGUMENTS:

NONE.

OUTPUT:
ARGUMENTS:

LUN ITS
NSCATT
SCTTYP

DIAM
WAVLEN
MPFLAC

/PLOCK1/:
DT
ISEED

/ILOCY2/:
RADHGT
CNTFPO
RNDWTH
PrS
RNGEPP
XY?

AMP
T

=LOCICAL UNIT NUMBERS FOR THE OUTPUT FILES.
=NUFBER OF SCATTFRERS.
=INDEX INDICATING TYPE OF SCATTERER.
=1 FCR CONSTANT TYPE.
=2 FOP FLAT-PF.ATF TYPF.
=3 FOP CORNER TYPF.
=DIAMETERS OF THE FLAT PLATE SCATTERERS.
=PAPAR WAVF LENGTH.
=vULTIAPTH FAC.
=.TPUF. IF MULTIPATH EFFECTS ARE TO BE ACCOUNTED FOR.
=.FALSE. OTHERWISF.

=SIMULATION STFP SIZE.
=PANDrC 'UMERP GENERATOR SEEDS (1*4).

=HEIGHT OF THE RADAR ABOVE THF SEA.
=CFNTER FRFOIQENCIFS OF THE SHIP-MOTION SPECTRA.
=PANDwIPTH OF TPF SHIP-MOTION SPECTRA.
=RMS VALUES OF THF SHIP MOTICN PROCESSES.
=RANGE EPROF IN THF PHA'E CENTER LOCATICN.
=CAFTFSIAN COORDINATFS OF THF SCATTERING CENTERS

IN THE SHIP-CG AXIS SYSTFM.
=AMPLITUDES OF THE SCATTERERS.
=TRANSFORMATION FPOM SHIP-CC 6-DOF POSITION TC

SCATTEFR 6-DOF POSTTION.

C AUTHOP: D.Y.NCRTHAN.
C DEVELOPED: 4/P2.
C MCEIFIED: 19B2.
C--------------------------------
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SU''OUTINF INIT(LUFITS,NSCATT,SCTTYP,DIAM,WAVLFN,MFFLAG)
SINSEPT SYSCCv>ASKFYS
t'INSERT RCS>POUTINES>SIZE
SINSFRT PR'S>FOUTINES>BLOCK1
eINSFRT ECS>ROUTINES>BLOCK2

IFTEGEP LUNITS(1),FNAM(8,9)
INTrGEF SCTTYP(NSCATT)
LOGICAL FUNIT,YESNO,MPFLAG
INTEGER*4 I11,I2
PAPAMETER (TWCPI=6.2832)
DATA FNAM/'X-CG',6*' ,

* 'Y-CG ' ,* Y '',* ' 7.-CC6* I '',* PH'FNI-CG,S* *
* 'THETA-CG' ,*

* ~~'PSI-CG',S*' '
* 'RCSMAG,5* '
* 'A7-GLINT',4*' ,* 'FL-GLINT',4* ' /

C
ISEED= 1
RADHGT=40. 0

3 CALL TNOUA('FNTEP RADAv WAVLENG'T: ',23)
RFAD (1,*,ERR=3) WAVLEN
CALL GFTSCT(XYZ,NSCATT,AMP,SCTTY?,DIAN)
DO 5 I- 1,NSCATT

IF(SCTTYP(I).EQ.3) AvP(I)=AMF(I)/WAVLEN
5 CONTINUE

CALL GETPRY(CNTFRO,PNDWTH,RMS)
CAI.I G-TMAP(XYZNSCATT,T)

7 CFLL TNOUA('FNTFP PERCFNT PANGE FRROR: ',27)
PFAD(1,*,ERR=7) FCT
PNGERP=6'AYLEN*(PCT/100.)

10 CALL TNCUA(';'NTEP SIFP SlF: ',17)
PEAD(1,*,EPR=10) DT

C
C OPEN OUTPUT FILES

DO u5 1=1,9
IF(FUNIT(NFU)) GO TO 40

STOP
a10 CALL OPENSA(ASWRIT+ASSAMF,FNAM(1,I),16,NFU)

*LUNITS(I)=~NFU+4
4.' CONTINUF

C SFT UP FOR MULTIPATH
£46 CAll TNOUA('FNTFF WAVF RMS: ',16)

RFAD( 1, * ,EPR=u6) WAVR''
IF(.NOT.YESNO( t!SE YULTIPATH? )) CO TO 55

MPFLAG=.TPUF.
T 1=101
I 2=1001
DO sC I=1 ,NSCTT

CALL MPINITCI,C.O,tWAVPVRS,WAVLFN,O,I1,12,DT)
11=1 1+5
T2=12+6

50 CC TINUF
GO TO 60
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55 MPFLAG=.FAISF.
60 CONTINUE

C CALCULATE AND STOFF SPECT°A
DO 70 1=1,6

CALL PROCES(I,CNTFEO(I),ENDWTH(I),INTL(I),.TRUE.,PNDVAR,0.O)
70 CONTINUE

RETURN
END

C FILE: GETSCT
C-- ---------------------
C PURPOSE:
C TO PEAD IN THE SCATTERING PAnAVETERS FOP THF INDIVIrUAL
C UNIT-SCATTERERS.
C
C INPUT:
C ARGUMENTS:
C NONE.
c
C OUTPUT:
C ARGUYENTS:
C XYZ(3,I) =CARTESIAY COOPDS. OF SCATTERER LOCATIONS

C IN THF SHIP-CC AXIS SYSTEM.
c NSCATT =NUMPFR OF SCkTTFPFRS.
C AMP =AMPLITUDE OF THE SCATTEREPS.
C SCTTYP =INDICATES TYPE OF SCATTERER.
C DIAM =FLAT PLATE DIAMFTER, IF APPROPRIATE.

C AUTHOR: D.Y.NCETHAM.
C DEVFLOPED: 4/82.
C MODIFIED: 19B2.

SUBRCUTINF GETSCT(XYZ,NSCATT,AMP,SCTTYP,DIAM)
5INSERT SYSCOM>ASKEYS

INTFGEP FNAME(16)
LOGICAL FUNIT
INTEGEP SCTTYP(NSCATT)
DIMFNSION XY7(3,NSCATT),AMP(NSCATT),DIAM(NSCATT)
DATA FNAME/'SCATT-PARMS ',1*' 'V

C
C CPFN INPUT FILFS AND PEAD IN SCA'TFPIYC PARANETFRS

IF(FUNIT(NFtT)) CC TO 10
* STOP

10 CALL CPE%!5S1(ASDFAD+A$SPSF,FNPMF,32,NFU)
LUN=NFU+4
PFAD(LUN,11) VUM1,DUM2,rUM3,DUM4

11 FCFMAT(A4/A4/A4/A4)
tNSCATT=O
Do 15 I=1,100

FEAD(LUN,*,EvN=20,EP?=20) XYZ(1,I),XY!(2,I),YYZ(3,I),AMP(I),

NSCATT=N!SrATT+ 1
1e CONTTNU-
20 COCTINUtF

100

99-
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C WPITF WESSAGE AND CIOSF INPUT FILE
WRITF(1,25) NSCATT

,9, 25 FORMAT(' THERE APE',I3,' SCATTERERS.')
j * CAT.L CLOSSA(NrI1)

RETURN
END

C FILE: GETPRM

... C PURPOSE:
C TO READ IN THF SHIP-MOTION-PROCESS PARAMETERS.
C
C INPUT:
C ARGUMENTS:
C NONE.

! . C
C OUTPUT:
C ARGUlIENTS:
C CNTFRQ =CENTER FREQUENCIFS OF THE SHIP-NOTION SPECTRA.
C BNDWTH =BANDWIDTH OF THF SHIP-MOTION SPECTRA.

- C RMS =RMS VALUES OF THE SHIP MOTION PROCESSES.
C
C AUTHOR: D.Y.NORTHAN.
C DEVELOPED: 4/82.
C MODIFIED: 1982.

SUBROUTINE GETPRM(CNTFPQ,?NDWTH,RMS)
SINSERT SYSCOM>ASKEYS

INTEGER FNAME(16)
_ LOGICAL FUNIT

DIMENSION CNTFRQ(6),PNDWTH(6),RMS(6)
DATA FNANE/'SHIP-PARMS',11*' /

C CPEN INPUT FILE AND RFAD IN MOTION PARAYFTEPS
IF(FUNIT(NFU)) CC TO 10

L STOP
10 CALL OPVNSA(ASREAD+ASSAMF,FNAME,32,NFU)

I UN=NFU +4
READ(LUN,13) DUM1,DUM2,DUM3

13 FOrirAT(A4/A4/A4)
N.AR.!S=O
DO 15 I=1,5

NPARMS=NPARMS+1
READ(LUN,*) CNTFPQ(I),FNDWTH(I),RMS(I)

0' ~~~~c
C CLCSF INPUT FILE

20 -.- L CLCSSU(NFU)
.RRTURN
FND

C FILT: GFTYPP
C- ---- *-------------------

C FUFposc:
C IC DEFINE TYE LINEAR MOTION-IAPS FOR THE I~nIVIDUAT.
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C UNIT-SCATTEPEF LOCATIONS.
C
C INPUT:

* ' C ARGUMENTS:
C XYZ(3,I) =CAPTFSIAN COORDS. OF SCATTERER LOCATIONS
C IN THY SHJF-CG AYIS SYSTFM.
C NSCATT =NUMPFR OF SCATTFPERS.
C
C OUTPUT:
* C ARGUMENTS:
C T =TPAlqFOPMATIOv FROM SHIP-CG 6-DOF POSTTION TO
.' C SCATTFRER 6-DOF POSITION.

C AUTHOR: !l.Y.NORTHPM.
C DEVELOPED: 4/82.
- MODIFIED: 1982.

SUPROUTINP GFTFAP(YYZ,NSCATT,T)
DIMENSION XYZ(3,NSCATT),TC3,6,NSCPTT)

C
DO 20 K=1,NSCATT

DO 10 1=1,3
DC 10 J=1,3

T(I,J,K)=.O
'-- IF(I.EQ.J) T(I,J,K)=1.0

10 CONTINUE
T(1,4,K)=O.O

e ~~~~~~T(2,4,K)=-XYZ(3,K)i _ T(3,L,K)=XYZ(2,K)
T(1,5,Y)=XY"(3,K)
T(2,5,K)=C.O
T(3,5,K)=-XY7( 1,K)
T(1,6,K)=-XYZ(2,K)
T(2,6,K)=YY7(1,Y)
T(3,6,K)=O.C

20 CONTINUE
R ETURN
FND

C FILE: TRNSFR

C PURPOSE:
C TO ORTAIY THE COOPDINATFS OF THE ITH SCATTERER IN
C THE RADAR AXIS-SYSTEM.
C

C INPUT:
C APGUMFNTS:
C PI =SCATTEPRE COORrINATFS IN THE SHIP-CG AXIS SYSTF1.
C XSHIP =SHIP-CG, 6-DOF POSITION DUE TO MANEUVERING.
C RAPHGT =HFIGHT OF THF RADAR APOVF THF SEA.

:r C

C CUTPUT:
C ARGUMENTS:
C DBLRI =FADAR AXIS-SYSTEM COORDS. OF THE ITH SCATTERER (I*4).
C

*. C AUTHOR: D.Y.dCRTIHA.

102
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C DFVELOPFD: 1982.
C MorIFTrD: 1982.

SURFOUTINE TRNSFP(RI,XSHIP,FADHC-,P8LRT)
DOUBLE PRECISION DFLRI

DIMFNSTON RI(3),Y5UTPP(6),A(3,3),DRLRJ(3),Y(3)
C

SPHI=STN(XSHIP(4 ))
CPHI=COS(XSHIP(4))
STHY=SIN(XSPPT?(5))
CTVF=COS(XSHI7(5)!)
SPSI=SIN (XSHIP(6 ))
CPSI=COS(XSHIP(6))

C
A( 1,1 )=CPSI*CTHr
A(1,2)=CPSI*STHE*SrHI-cPSI*CPHI
A(1,3)=CPSI*STHE*CPHI+SPSI*SPHI
A(2,1)=SPSI*CTHF
A(2,2)=SPSI*STHE*SFIJT+CPSI*CPHI
A(2,3)=SPSI*STHE*CPHI-CPSI*SPHI
A(3,1)=-STHF
A(3,2)=CTHF*SPuI
A(3,3)=CTHE*CPHI

C PCSITION DUE TO SFA MOTION
DO 20 1=1,3

Y( I )=O.O
1O 10 J=1,1

Y(I)=Y(I)+A(IJ)*RI(J)
1C CONTTNUF
20 CONTINU'F

C POSITION DUE TO MA':EUVFRING
PC 30 T=1,3

D°LFI(I)=Y(I)+XSHIP(I)
30 CONTINUE

C
C CORPFCT FOR RADAR BEING ABCVE T'HE EARTH

DFILF1(3)=DRI?I(3)-FADHCT

RETURN

C FIIE: LINYAP
C…-…--------------------…-…-

C PURPOSF:
C TO LINUERLY TPANSFOcK AY INPUT VFCTCR INTO AN OUTPUT VECTCR.
C

C INPUT:
C AFGUMFNTS:
r A =TF^vSFORG'TION MATPTY.

C NFOWA =YUVp OE pOW'S TN $A'.

C NOCLA =NUM11R O' COLUMNS IN '4'.
C X =VECTCR TO FE TRANEFC¢MFD.

C CUIPUT:
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ARGUMENTS:
y =FESVITANT VFCTOF.

C AUTHCR: D.Y.NCRTPHV.
C DFVFLOPFD: 4/82.

C MODIFIED: 1982.
C.-.-------------------.--

SUBROUTINF LINYAP(A,NRCWA,NCOLA,X,Y)
C DIMFNSICN A(NRC'WA,NCOLA),X(NCOLA),Y(NROWA)

PIUENSICTN A(3,f ),X(6),Y(3)

DO 20 I=1,NRCWA
Y( I)=O.O
DO 10 J=1,NCCLA

* ~~V( I)=Y(' )+A (Is)*Y(J)
10 CONTINUF
20 CONTINUE

R FT U R
END

C FILE: SIGNLS

C PURPOSE:
C TC CAIC'?LATE THE PECEIVFD RADAR-SIGNALS.

INPUT:
ARGUMENTS:

PSI
NSCATT
SCTTYP

DI AM
PHI
WA H I EW'AVIF'J
DPLRI
XSHIP
?P F LA G

OUTPUT:
A FGUMFNTS:

RCS
AZ C L NT
FLCLNT

=SHIP'S ASPECT PNGLF.
=NUM9ER OF UNIT-SCATTFRERS
=FLAG INDICATING THE TY"E CF SCATTERER.
=0 FOP CONSTANT.
=1 FOP FLPT PLATE.
=DIAMFTFR OF THF FLAT PLATES.
-PCLL ANGLF OF THE SHIP.
=RpADAP WAVFLENGTH.
=POSITICN VFCTCR CF THE ITH SCATTFRER, IN EARTH CCCRDS.
=POSITION VECTOR CF THE SHIP, IN EAPTH COORDINATES.
=MULTIPATH FLAG.
=.TP"r. IF MULTIPATH EFFECTS ARE TO BE CALCULATED.
=.FALSF. OTHERWTISF.
=PMPLITUDF OF THE ITH SCATTFRER.

=TAFGF FT PCS
=TAPGFi AZIMUTH-GLINT
=TAPGFT FIEVATION-CLINT

C AUTHCP: D.Y.NCRTHA.F.
C DEVELOPED: 4/82.
C MCDIFTFD: 1982, 19P?.
C.-.----------------.-.-.--

SUPRCUTNE SIGNLS(FPI,NSCATT,SC'TYP,DIAMPHI,WAVLEN,DPLPI,XSHIP,
* 0CS, AGLNTFLGLNT,MPFLAG)

SINSFPT PC5>PCUTTNFS>!IZF
SI NSERT PCS>PCIJTINES>PLOCK1
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SINSERT PCS>POUTINFS>PtOCK2
PCURLE PRECISTC!I rP,RATIC,PANGF,DX,Dv,r.7
rOUBLE PRFECISION DnJ RI
INTEGEP*4 ISFED
INTFGEP SCTTYPUnIMFY)
LOGICAL MPFIAG
DIMENSION RANGF(DIME.N2),DPLPI(3,PIMEN),P.(DIMEN2),XSPIP(6),

[, * PSI(DIMEN),DIAM(CIM.N),PHASE(DIMEN2),GNDRNG(DI'EN)
FPRAFAETER (TWCPI=6.?832)
DATA ISEED/10.0/

C
C CALCULATE RADAR-TO-SCATTFRER RANGFS

WAVYUK=TWOPI/WAV!FN
RSHIP=SQRT(XSHIP(1)**2+XSHIP(2)**2+YSHIP(3)**2)
rDO 10 I=1,NSCATT

DX=DBLPI (1, I)
-Y=DBLRI (2,I)
'D?=DBLRI(3,I)
DW=RNGERR *RANDl.A (ISEFD)
- ,GNDRNG (I )=DSQRT(DY**2+DY**2)4DW
RAN'GF(I)=DSQRT(DY**2+DY**2+D?-*2)+DW
IF(MPFLAG) PANGE(I+NSCATT)=

- * DSORT(CDX**2+DY**2+(XYZ(3,I)+YSHIP(3)-FADHGT)**2)+DW
10 CONTINUE

suM1=O .o
SUM2=0.0

IF(MPFLAG) NPTS=2*NSCATT

IF(.NOT.MPrIAG) NPTS=NFCATT
W- C CALCUIATE SCATTFRING AMPLITUDES

-- DO 15 J=1,NSCATT
A - P (J)=AFP(J)
IF(SCTTYP(J).FC.2) CALL FLTPIT(DIAM(J),WAVNUM,PSI(J),PHI,A(J))
IF(.NOT.MPFLAG) GO TO 13

C CAICULATE HULTIPATH AYPLITUDF AND PHASF EFFECTS
E ~~~~~TAPIGT=YSH4IP(3)+XY7(3,J)

- , CALL MPHAIN(J,TPHC.T,RADHGT,GNDPNG(J),TITE,PSISPC,XRFALYIMAG)
F1=SQRTC((1.O+XPFAL)**2+XIMAG**2)
F2=r1*SCPT(YRFAL**2+XIMAG**2)

. -; A (J+NSCATT)=F2*P(J)
* * ~~~~~A(J)=Fl*A(JC)

PHASE(J)=ATAN2(XIMAG,1.O+XPFAL)
PHASF(J+NSCATT)=ATAN2(YCX.AG*(1.0+2.0*XRFAL),YRFAL+YREAL**2-i. -'i * XIMIAG**2)
GO TO 15

- 13 PHASF(J)=O.O
1F CONTINIr'

C CALCULATF FCS AND CTTrT
DO 25 I=1,NPTS

_ ~~~~~Tvr( I .T E .V SC p T) Tl=,

-.' , IF(I.GT.NSCATT) I1=!-YSCPTT
: . '-'. AZCCFF=(XSIIP(2)*D9LFI(1 ,1) )/PANGE(I)

:-(XSHIP(1)*DRLFI(2,I1))/RANGP(I)
-'rr 25 J=1,NPTS

__ r
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IF(J.LF.NSCATT) GO TO 21
. J1=J-NSCATT
FZI=-(XSHIP(3)+DRIFI(3,J)++RADHGT)
GO TO 22

21 J1=J
RZI=DpLRI(3,J)

22 CONTINUE
ELCOEF=RZ I*(DELRI(1,J1)*DBLII(1,I1)+DBIRI(2,Jl)*

* DnLRI(2,I1))/(RANGE(I)*(PANGE(J)**2))
C
C CALCULATE PHASF DUE TO RPN'GF

DR=RANGE(I)-RANGF(J)
RATIO=DR/WAVLEN
ANGIE=2.0*TWCPI*(RATIO-DINT(PATIO))

C ADD MULTIPATH PHASE
ANGLE=ANGLE+PHASE(I)-PHASE(J)

C
r CALCUIATE SUMMATIOY TVRFS

TERM=A(I)*ACJ)*COS(ANGLE)
SUMr1=SUM1+TERM*ELCnEF
SUV!2=SUM2+TFRM*A7CCFF
SUM3=SUM3+TERY

25 CONTINUE
-;'M 3=SUM3+ 1 .O- 10
?CS=SUF 3

C CALCULATE GLINT IN YETERS
A.GLNT=SUM2/SUM3
ELCJNT=PSHIP*SUM1/SITI3 - (XSHIP ( 3)-RADHCT)
RPTUPN

END

C FILE: FLTPLT
*' r_______________________________._______________________________________--- 

C PFlPPOSF:
C TO CALCULATE A FLAT-PLATF-TYPE AMPLITUDE AT
C NEAR-PERPENDICULAR INCIDENCE.
C

C INPUT:
'l C ARGUFENTS:

C DIAM =DIAMETEFS OF THE PLATES.
-- r WAVNUM =WAVF NUM.ER FCR THE RADAR.
C AZIMTH =PACAR-TO-PLATE AZIYUTH ANGLE.
C FLFV =RADAR-TO-PLATE ELEVATION ANGLE.
C
C CUTPUT:
C ARGUVENTS:
C AMP =RESULTING SCATTERED AMPLITUDF.
C
C AUTHOR: D.Y.NORTHAM.
C DEVELCPED: U/82.
C MODIFIFD: 1982.

SUPFOUT'JE FT.TPLT(CTVA ,WAVNU",A7IM'TH,ELEV,ANP)
rAFA?'ETFF (TWCF''=6 .2832,S5' PI=T .77245,PION2=1 .70P)
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C,~~~~~

9, I ,

~~~~~~~C
C1=WAVNVM*(CTAM**2)/FQFTPI

- CALCUIATE AZIMUTH COMPCNENT
'F(AZITTH.NE.O.O) O TC 15

A7!AMP=1 .0
CO TO 20

1C C2=4AVNUM*DIAM*SIN(AZIMTH-PION2)
AZmAKP='AFS(STJ C2)/C2)

c
C CALCUIATE FLEVATION CCMPONENT

20 IF(ELEV.NE.O.O) GO TO 29
ELEAMP=1.0
GO TO 30

25 C3=WAVNUM*DIAM*SIN(FLEV)
ELEAMP=ABS(SIN(C3)/C3)

C
C CALCULATE TOTAL AFFLITUDE

30 AMP=C1*SQRT(ELEAMP*AZMAMP)
RETURN
END

C FILE: SHIP
C…-…------------------…--
C PURPOSE:
'-.C TO CLCULATF THF MANFUVERING TPAJFCTOPY CF THE SHIP
C IN EARTH COOPDINATES.

_! - INPUT:
_ ; APGUmENTS:

C , TIME =CUFFENT SIMULATION TIME.

C OUTPUT:
C ARGUMENTS:

-*, C YSHIP =EARTH COORDINATFS CF THE SHIP DUE TO tANEUVEPIR'G.
fj C

C AUTHCR: D.Y.NORTHPM.
C DFVFLOPED: 1982.
C MCEIFIED: 1q82, 1983.

SURROUTINE SHIE(TI.F,XSHIP)
, - -- LOCICAL FIRST

DIMFNSION XSHIP(6)
DATA XO,YO,ZO,VX,VY,VZ/6*0.0/,FTRST/.TPUE./,CMEGA,rSIO/2*0.0/

IF(.NOT.FIPST) GO TO 10
FISST= .FAI'E.

. CALL TNOUA(CFNTFP INITIAL SHIP CeORDS: ',27)
READ(1,*,EFP=5) XO,YO,2O

7 CALL TNOUA( 'rNTEP SNIP SPEFD: ',18)
PFA.D(1,*,'PR=7) V

, CALL TNOUAC'FNTFR INITIAL SHIP POTATION ANGLE (DEG): 4,1),. .|.' READ(1,*,FPF=8) PSIO
PSTO=PSTO/57.3A- -VYX=V*CCSCPSIO)
.- Y Y=V *SIN C PSIO 1)

- I-
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9 CAIL TNCl!A('ENTER SHIP TURNING RATF (RAD): ',31)
READ(1,*,FER=9) OMEGA

10 XSHIPC1)=XO+VX*TIME
XSHIP(2)=YO+VY*TIME
XSHIP(3 )=ZO+VZ*TIMF
XSHIP( 4 )=O . O
XSHIP(s)=0.0
XSITPCE)=PSIO+CMEGA*TIHF
RETURN
FND

C FILE: ASPECT

C PURPOSE:
C TO CALCULATE A SCATTERFR'S ASPECT ANGLE RFLATIVE TO THE RADAR.
C
C INPUT:
C AFGUMENTS:

X =X-COORDINATE OF THF SCATTEREP.
C Y =Y-COOPDINATE OF THE SCATTERER.
C Psi =SHTP ROTATION ANGLF.
C SCTNUM =INDEX TO THE SCATTFRFRS (I).
-' C FIRST =FIRST-PASS FIAG.

- C =.TPUF. FOR THE FIRST PASS THRCUGH THE SIMULATION.
C =.FAISE. OTHEPWISF.
C
C OlTPUT:
C ARGUMENTS:
C ASPFCT =SCATTERER'S ASPECT ANGLE (RAD).
C
C AUTHOR: D.Y.NORIHAM.
C DFVELCPED: 4/82.
C MCDIFIED: 1982.
C… -------------------------…-…-

FUN'CTION ASPFCT(X,Y,PSI,SCTNUM,FIRST)
SINSERT PCS>ROUTINES>SIZr

LOGICAL FIRST
INTEGER*4 ISFED
INTEGER SCTNUM
DIMFESION ASPCTO(DIMEN)
PARAMFrFR (DECPFE=2.0)
DATA ASPCTO/CIYEN*O.O/,ISEED/1/

C
C ASSIGN RANDOM INITIAL ASPFCT

. IFC.NOT.FIPST) GO TO 10
AFPCTO(SCTNU1)=2.0*(?ANDSA(C t' lED)-O.5)*(DFGREE/57.296)

C
- CALCUIATE ASPECT

10 ASPFCT=ASPCTO(SCTNUM)+PSI+ATAN2(Y,X)
20 PFTURN

FND

C FILE: PROCES

C PURPOSE:
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C TO REALIZE THE -HIP-CG MCTION PROCESSES.
C
C INPUT:

i-* C ARGU!'ENTS:
C II =INDEX TO THE SHIP-CG PROCFSSES.
C CNTFRQ =CENTFR FROQUFNCIFS OF THY SPECTPA (RAD/S).
C BNDWTH =PPNDWIDTHS OF SHE SPFCTRA (R'D/S).

. C ISFED =RANDOl N-UMPEF GENERATOR SFEDS (I*4).
C FIRST =FIRST-PASS FLAG.
C =.TRU'. FOR THF FIRST PASS THPrUGH THE SIMULATION.
C =.FALSE. CTHEPWISE.
C TIYE =CURRENT SIMUlATION TIME (S).

:C' C
C OUTPUT:
C ARGUYENTS:
C C RNDVAR =CURRFNT YALUE CF THE DESIPED PROCESS.

C AUTHOR: D.Y.NORTHPM.
C DFVELOPED: 4/82.
C MODIFIED: 1982.

r. * SUFRCUTINF PRCCES(TI,CTFRO,RNDWTH,ISEED,FIRST,RNDVARTIMF)
PARAMETER (TWOPI=6.2832,PMSFAC=0.4499,MAXFRQ=31)
LOGICAL FIRST
INTFGEP*4 ISEED

-'- COv"CN/RVPLY/S(MAXFRQ,6),W(MAYFR(,6),DW(6),PHI(MAXFRO,6),
* PARASC(10),NFFEQ(6)

C
IF(.NOT.FTRST) GO TO 100

C
C INITIALIZE RANDOM PHASFS

DO 5 I=1,MAXFRC
PHI (I,II)=TWOPI*RANDA ( ISEED)

E rONT1AUE
C
C INITIALIZE PARAMETERS

* PARAMS(1)=CNTFRQ
PARA!S(2)=PNDWTH
WMIN=CNTFRQ-PNDWTH
P;RFA!VSC ()=WMIN
NFREQ(II)=MAyFRQ
DW (II )=RNrWTP /10.

-* ~~~~C
C CALCULATE THE SPECTPA

CALL SPCTFM(1,PARPA!S,NFREQCII),DWCII),wC ,ir),S 1,II))
c

; . * C STORF YOR!ALI7ED SPECT'IUM
MAX=NFREQ (I I)
DO 20 I=1,MAY

S(C,II)=SCRT(2.0*S(I,II)*DW(TI))
20 CCNTINUE

9-0 TO 200

r CALCULATF THF CURRENT VALUE OF THE PPCCFSS
-. 100 SU!=O.O

MAX=NFPFQC(I)
DO 110 I=1,MAY
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CCSIN:E=COS(PHI(u,II)+wC!(I,TI)*TIiE)
suF=sUM+s(III)*rOSINE

110 CONTINUtE
.. PVAR=RM SF AC*5U

-200 RETUPN
F ND

r FIlE: SPCTPM

C PORPOS7:
C TO GENERATE THE SFECTRUM OF A PROCESS OVER A RANGE OF

__ C POSITIVF FREOUFNCIFS.

C INFUT:
C ARGUMENTS:
C TYPE =FLAG TNDICATTNG TYPE OF SPECTRUM TO BE GENERATED (I).
C PAPAMS(1) =CFNT£F FRFCUENCY rF THE (UNIMODAL) SPECTRUM (PAD/S).
C PARAMS(2) =BANDWIDTH OF THF SPECTRUM (RAD/S).
C PAPAMS(3) =LOWFST FRFQUENCY AT WHICH THE SPECTRUM IS

- C TO PE CALCULATED.
C NPFRFQ =NIIMER OF FREQUENCIES AT WHICH THE SPECTRUM

IS TO PE CALCULATED.
C DW =FPEQUFNCY INCREMENT (FAD/S).
C
C OUTPUT:
C ARGUNENTS:
C W =FREQUENCIES AT WHICH THE SPECTRUM IS CAICULATED (RAD/S).
C S =VALUES CF THF SPECTRUM.
C
C AUTHOP: D.Y.NOPTHAV!.
C DEVELOPED: 4/82.
C MCDIFIED: 1982.
C----------------------------------

SUPPOUTINE SPCTRM(TYPE,PARAMS,NFPEQ,DW,W,S)
INTFGEF TYPE
_ IMENS'CN PARAmS(l),SF1),WC(1)

C
CO TO (10), TYPE

WPITEC1,1) TYPE
1 FCONAT('NO SPECTvt'M DFFTNF FCP TYPF=',I2,' (SPCTRM).')

CO TO 20
C
C BANDPASS SPECTRUM

10 CNTFRC=PARAS(C1)
PNDWTH=PARAMS(2)
WFIN=PARAMSC(3)
A ALPHA=BNDhWTH/2.0
DO 15 I=1,YFREO

W(C)=WMIN+(I-1)*rW
S(I)=ALPHA/(ALPHA**2+(W(I) CNTFRQ)**2)
S(I)=S(I)+ALPHA/(ALPHA**2+(W(I)+CNTFRQ)**2)" ' ~~~~~S(I)=2.0*S(I)

1F CONTINUE
20 FETURN

,END
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